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Abstract
Modern data center workloads are composed of multiserver jobs, computational jobs that require multiple
CPU cores in order to run. A data center server can run many multiserver jobs in parallel, as long as it
has sufficient resources to meet their individual demands. However, multiserver jobs are generally stateful,
meaning that job preemptions incur significant overhead from saving and reloading the state associated
with running jobs. Hence, most systems try to avoid these costly job preemptions altogether. Given these
constraints, a scheduling policy must determine what set of jobs to run in parallel at each moment in time
to minimize the mean response time across a stream of arriving jobs. Unfortunately, simple non-preemptive
policies such as First-Come First-Served (FCFS) may leave many cores idle, resulting in high mean response
times or even system instability. Our goal is to design and analyze non-preemptive scheduling policies for
multiserver jobs that maintain high system utilization to achieve low mean response time.

One well-known non-preemptive scheduling policy, Most Servers First (MSF), prioritizes jobs with higher
core requirements and is known for achieving high resource utilization. However, MSF causes extreme
variability in job waiting times, and can perform significantly worse than FCFS in practice. To address
this issue, we propose and analyze a class of scheduling policies called Most Servers First with Quick Swap
(MSFQ) that performs well in a wide variety of cases. MSFQ reduces the variability of job waiting times by
periodically granting priority to other jobs in the system. We provide both stability results and an analysis
of mean response time under MSFQ to prove that our policy dramatically outperforms MSF in the case
where jobs either request one core or all the cores. In more complex cases, we evaluate MSFQ in simulation.
We show that, with some additional optimization, variants of the MSFQ policy can greatly outperform MSF
and FCFS on real-world multiserver job workloads.

1. Introduction

Modern data centers serve multiserver jobs that occupy multiple servers or CPU cores simultaneously [26,
35, 14, 13]. Each multiserver job has an associated server need, the number of servers the job requires to
run, and job size, the amount of time the job must run to be completed. A set of multiserver jobs can run
in parallel, but only if the system has enough dedicated servers for each job. A data center scheduling policy
must select which jobs to run in parallel at every moment in time. Given a fixed number of servers, k, a
common goal is to design a scheduling policy that minimizes the mean response time across jobs in a stream
of arriving multiserver jobs — the average time from when a job arrives to the system until it is completed.

There are two central difficulties in designing performant scheduling policies for multiresource jobs. First,
modern datacenter workloads generally exhibit large variability in both the server needs and sizes of their
jobs [35]. As a result, it is usually impossible to utilize all available servers using the set of multiserver jobs
currently in the system. In general, leaving more servers unutilized on average will lead to higher mean
response time or even system instability. Unfortunately, maximizing the number of utilized servers at a
specific moment in time requires solving a knapsack problem instance. It is even more difficult, then, to
maximize the utilization of the available servers as jobs enter and exit the system over time.

Second, modern multiserver jobs are generally stateful, meaning that job preemptions require persisting
and/or reloading a significant amount of program state [31]. As a result, job preemptions or migrations can
take a prohibitively long amount of time to perform. Due to this overhead, data centers typically employ
non-preemptive scheduling policies that avoid costly preemptions altogether. Given these two constraints,
this paper designs and analyzes new, non-preemptive scheduling policies that aim to minimize the mean
response time across a stream of multiserver jobs.

1.1. Prior Approaches
Much of the prior work on multiserver job scheduling uses frequent job preemptions to ensure that server

utilization remains high as jobs enter and leave the system [11, 24, 20, 19]. These preemptive policies are of
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limited utility when processing the stateful jobs that are common in data centers.
When it comes to non-preemptive policies, there are three central approaches suggested in the literature:

First-Come First-Served (FCFS) is a naïve non-preemptive policy that serves jobs in arrival order until
the system runs out of available servers. For example, when a job with a large server need reaches the
front of the queue, the system may not have enough available servers to fit this job in service. FCFS
stops scheduling additional jobs at this point, even if other jobs in the queue could fit into service. This
phenomenon, known as Head-of-the-Line blocking, causes FCFS to underutilize servers, resulting in high
mean response time. Although FCFS is a simple policy, analyzing it has been proven difficult due to its
dependence on the random arrival order of jobs with different server needs. Only recently, [23] derived mean
response time bounds that confirm the empirical observation that FCFS performs poorly in practice.
Most Servers First (MSF) [34, 5, 20] is a non-preemptive policy that prioritizes jobs with larger server
needs. Specifically, whenever the system has available servers, jobs are considered in descending server need
order. Jobs that find their required number of servers being put in service successively. To understand
both the benefits and the pitfalls of MSF, consider an example where jobs either need either 1 server or
k servers. We refer to this case as the one-or-all case for multiserver jobs. In this case, MSF serves jobs
in two alternating phases. First, MSF serves k-server jobs until none remain in the system. Then MSF
serves 1-server jobs until none remain before returning to serve k-server jobs. We will show in Section 5.1
that, by switching between these two phases, MSF achieves optimal long-run average server utilization in
the one-or-all case.

While one might hope that MSF leverages its high server utilization to achieve low mean response time,
we also find that MSF takes an increasingly long time to switch phases as the job arrival rate increases (see
Section 5.3). This creates a feedback loop in the system whereby many 1-server jobs accumulate while the
system processes k-server jobs, leading to a long period of serving 1-server jobs during which many k-server
jobs will accumulate. The two things to note about this process are that (i) despite its name, MSF can
spend long periods of time giving priority to 1-server jobs over k-server jobs and (ii) because the class of jobs
not in service accumulates quickly, there are almost always a large number of jobs in the system under MSF.
Figure 1 illustrates this problem via simulations that track the number of jobs in the system under MSF for
the one-or-all case. As MSF alternates between phases, jobs of the opposite class accumulate quickly in the
queue. While all jobs are eventually served, this behavior ensures that a significant fraction of arriving jobs
have long queueing times, leading to a high overall mean response time.
First-Fit is a variant of FCFS that avoids head-of-line blocking by continuing to examine jobs in arrival
order after finding a job that does not fit in service. One might hope that this policy gets a near-optimal
server utilization without the harmful periodic behavior of MSF. Unfortunately, in the one-or-all case, First-
Fit has the same alternating behavior as MSF, but First-Fit spends even more time serving 1-server jobs.
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Figure 1: Number of jobs in the system under MSFQ and MSFQ where there are k=32 servers, 90% of the job arrivals are
1-server jobs, mean job sizes are 1 for 1-server jobs and k-server jobs, and jobs arrive at a rate of 7.5 jobs/second.
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1.2. A New Approach: Most Servers First with Quickswap
Our central observation is that, while MSF achieves high server utilization, it does a poor job of switching

which class of jobs are in service. Specifically, in the one-or-all case, MSF ties the decision to switch from
serving 1-server jobs to serving k-server jobs to the time required to drain all 1-server jobs from the system.
This time, which is essentially a partial busy period in an M/M/k queue, explodes as the arrival rate
increases or as k becomes large [4], allowing many k-server jobs to accumulate in the system. To reduce
mean response time, our goal is to maintain the high utilization of MSF while shortening the time the
scheduling policy takes to switch between job classes.

With this motivation in mind, we propose a new class of policies called Most Servers First with Quickswap
(MSFQ), which is designed to improve the performance of MSF in the one-or-all case. Unlike MSF, which
tries to drain all 1-server jobs from the system before switching, MSFQ switches to serving k-server jobs
whenever the number of 1-server jobs in the system falls below a threshold, ℓ. That is, when the number
of 1-server jobs falls below ℓ, MSFQ stops admitting jobs into service and lets all running 1-server jobs
complete. MSFQ can then begin serving k-server jobs. By increasing ℓ, we can shorten the time MSFQ
requires to switch phases, reducing the mean response time compared to MSF. Furthermore, we will prove
that MSFQ maintains the high server utilization achieved by MSF.

Figure 1 compares the number of jobs in the system under the MSF and MSFQ policies (the yellow
and blue curves, respectively). Setting a sufficiently high value of ℓ for MSFQ (ℓ = k − 1 in this case)
greatly dampens the feedback that causes jobs to accumulate under MSF. As a result, an MSFQ policy
can achieve a much lower mean response time than MSF. We will also show that MSFQ policies are much
better at balancing the mean response time between different job classes. While our MSFQ policy is tailored
specifically to the one-or-all case, we will also explore generalizations of this policy to an arbitrary number
of job classes.

1.3. Contributions
Inspired by the high server utilization of the MSF policy, this paper formally defines and analyzes the

class of MSFQ policies for scheduling multiserver jobs. Our analysis has two main goals. First, we aim
to prove stability results about MSFQ policies. We say the system is stable under a scheduling policy if
the policy achieves sufficiently high server utilization such that the mean number of jobs in the system and
the mean response time across jobs are both finite. Second, we will analyze the mean response time under
MSFQ policies and their variants both in theory and in simulation to show the advantages of these policies
compared to prior approaches. Specifically, the contributions of this paper are as follows.

• First, in Section 4.1, we formally explain the shortcomings of the MSF policy in the one-or-all case.
Here, we show how excessively long periods of serving 1-server jobs cause a feedback effect that leads
to poor mean response time.

• In Section 4.2 we introduce the MSFQ policy, which uses the Quickswap mechanism to force the policy
to switch phases faster. Crucially, in Section 5.1 we show that any MSFQ policy matches the server
utilization of MSF by proving that MSFQ is throughput-optimal. Here, throughput-optimality means
that MSFQ will stabilize the system whenever the system can be stabilized.

• Then, in Section 5.3, we analyze the mean response time under MSFQ by approximating the Laplace
Transform of the phase durations and number of jobs at the beginning of each phase. While the MSFQ
system resembles a polling system (See Section 2.3), MSFQ cannot be analyzed using existing results
from the polling literature. Hence, our analysis of MSFQ also represents a new contribution to the
extensive body of work on polling systems.

• Finally, Section 6 examines generalizations of MSFQ to real-world settings where jobs’ server needs
can vary widely. We evaluate two generalizations of MSFQ, called Static Quickswap and Adaptive
Quickswap, and evaluate these policies in simulation using traces from the Google Borg cluster sched-
uler [35]. Our simulations show that a well-designed Quickswap policy can improve mean response
time by orders of magnitude. Furthermore, Quickswap policies tend to achieve an equitable mean
response time between the job classes as compared to a less fair priority policy like MSF.
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2. Related Work

We now describe prior work on multiserver jobs from the systems and theory communities in Sections 2.1
and 2.2, respectively. We also note that the Quickswap policies analyzed in this paper bear a resemblance
to prior queueing-theoretic work on polling systems. However, because the connection between multiserver
jobs and polling is somewhat indirect, we discuss the polling systems literature separately in Section 2.3.

2.1. Systems for Multiserver Job Scheduling
Modern data centers schedule multiserver jobs across thousands of machines, supporting workloads with

diverse server needs and job sizes [27, 35, 37]. None of these schedulers make formal performance guarantees
about system stability or mean response time, generally relying on heuristics to make scheduling decisions.

SLURM [27] is an open-source cluster scheduler used in data centers and high-performance computing
environments. It uses a combination of heuristics and a variant of FCFS scheduling called BackFilling. While
this approach can improve resource utilization by running low-priority jobs opportunistically, it requires
accurate predictions of job sizes to work well, and can therefore suffer from low server utilization in practice.
Borg [35], Google’s internal resource management system for data centers, schedules batch jobs by placing
incoming jobs in an FCFS queue. Once there is enough capacity to serve the next batch job, complex
heuristics are used to assign the job to a specific set of servers. YARN [37], integrated with Hadoop,
supports both FCFS and other heuristic policies aimed at optimizing fairness instead of stability or mean
response time. Hence, many systems designed to schedule multiserver jobs stand to benefit from improved
scheduling policies that are accompanied by formal performance guarantees.

2.2. Multiserver Job Scheduling in Theory
Prior work from the theory community on multiserver jobs has mostly focused on the stability and

response time analysis of FCFS. The stability region of FCFS was studied in [33, 29, 1] in the case where
all job sizes follow the same exponential distribution. Subsequently, [22, 30] considered the case where
jobs belong to one of two job classes, deriving explicit expressions for the stability region of FCFS. For
many years, mean response time analysis of FCFS was restricted to systems with just two servers [10, 15].
However, [23] recently derived explicit bounds on mean response time that are tight up to an additive
constant. Matrix geometric approaches [2, 3] have also recently been used to characterize the performance
of FCFS systems with two job classes under specific service time distributions. While FCFS is becoming
well-understood, all of these analyses confirm that it can perform poorly in terms of both stability and mean
response time.

There is comparatively little work on more complex and efficient policies that do not require job pre-
emptions. For example, the well-studied MaxWeight policy is throughput optimal, but requires preemption
and is computationally costly to implement in practice [28]. Other recent work on scheduling multiserver
jobs has also been restricted to the case of preemptible jobs [21, 24]. There are two prominent examples of
throughput-optimal, non-preemptive policies for scheduling multiserver jobs. First, Randomized Timers is
a throughput-optimal policy based on MaxWeight that is non-preemptive [32]. Unfortunately, there is no
known mean response time analysis of Randomized Timers, and the policy has been shown perform poorly
in practice. Second, [12] recently analyzed a new class of non-preemptive policies called Markovian Ser-
vice Rate (MSR) policies. An MSR policy precomputes a set of schedules with high server utilization, and
switches between schedules according to a continuous-time Markov chain that is independent of the system
state (i.e., queue lengths). The class of MSR policies is throughput-optimal and admits an analysis of mean
response time. However, because MSR policies do not consider queue length when switching schedules,
they waste capacity unnecessarily, resulting in high mean response time. We will show that MSFQ can
significantly outperform MSR policies by considering queue length when switching schedules.

2.3. Polling Systems and Most Servers First
In the one-or-all setting, the MSF and MSFQ policies we study (see Sections 4.1 and 4.2) are theoretically

similar to a two-station polling system with exhaustive service, where the first station serves k-server jobs,
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and the second serves 1-server jobs. Furthermore, the system incurs something like a switchover time when
moving from 1-server jobs to k-server jobs.

The literature on polling systems is vast [6]. The single-polling-station and infinite-polling-station sys-
tems are well-understood [7, 17], and approximations for waiting time in the multiple-polling-station system
have been established [8]. Stability issues caused by switchover times have also been studied [18, 16]. How-
ever, our multiserver job system considers a mix of single-server and multiserver operations not found in the
polling literature. Furthermore, while MSF essentially uses an exhaustive service discipline for switching
phases, the class of MSFQ policies uses a more generalized, threshold-based version of exhaustive service
that is not analyzed in the prior work. Hence, the analysis of MSFQ in this paper also serves as a new
contribution to the literature on polling systems.

3. Model

3.1. Multiserver Jobs
We consider a system equipped with k servers. A multiserver job can be represented by an ordered pair

(x, s), where x ∈ {1, 2, · · · , k} is the number of servers it needs in order to run and s is the service duration
(also known as job size), the time it needs to run on the servers before completion. Jobs occupy a fixed
number of servers throughout their time in service, and cannot be preempted: once started, a job must be
run until it is complete. We also refer to a job’s server needs as its class. A class-i job is a job that requires
i servers. We refer to this job model as the Multiserver Job (MSJ) model.

We consider a stream of multiserver jobs arriving into our system; class-i jobs arrive according to an
independent Poisson process with rate λi. We assume the service durations of class-i jobs are i.i.d. random
variables with exponential distribution, so that Si ∼ exp(µi).

We define an arrival rate vector λ = (λ1, λ2, · · · , λk) and a completion rate vector µ = (µ1, µ2, · · · , µk).
Let λ denote the total arrival rate of multiserver jobs into the system. Hence, λ = ∥λ∥1. Let pi be the
fraction of arriving jobs belonging to class i. Equivalently, pi = λi/λ.

We define a feasible schedule as a multiset of classes of multiserver jobs that can run in parallel, obeying
the rule that the total number of servers requested does not exceed k. We use u = (u1, u2, · · · , uk) to denote
a feasible schedule in the multiresource system, where it puts ui class-i jobs in service and

∑k

i=1
i ui ≤ k,

as the total server demand cannot exceed k.
In the one-or-all setting, λi = 0 for all 1 < i < k because jobs can only request one core or all cores in

the system. In this case, λ = λ1 + λk. A feasible schedule in this case can either be uk = 1 and ui = 0 for
i < k, or u1 ≤ k and ui = 0 for i > 1.

A scheduling policy u(t) = (u1(t), u2(t), · · · , uk(t)) picks a feasible schedule at every time t, subject to
the requirement that no job is preempted: the service policy at time t must contain all jobs whose service
has started but not completed by time t. We allow the scheduling policy to select a ui(t) value that exceeds
the number of class-i jobs available for some job class i. In general, a scheduling policy may depend on the
system state as well as policy-specific state.

We model the system state with a pair of vectors: The total occupancy vector n(t), where ni(t) is the
number of class-i jobs in the system at time t, and the service vector u(t), chosen by the scheduling policy
and discussed above. In addition, we allow a general policy-specific Markovian state z. The triple (n,u, z)
represents the system state and forms a countably infinite Markov chain.

For notational convenience, in the one-or-all setting, we neglect all the 0’s in the vectors and abbreviate
n(t) as n(t) = (n1(t), nk(t)) and u(t) as (u1(t), uk(t)). Thus, we can represent the system state with a
5-tuple (n1, nk, u1, uk, z).

3.2. Stability Region
For a given policy p, the mean response time of the system may or may not be bounded. Equivalently,

the system may or may not be positive recurrent. Considering the system where job size distributions and
job classes are fixed and we vary the arrival rates, we define the set of arrival rates such that the mean
response time is finite under policy p as the policy stability region Cp. Formally, Cp = {λ | E[Tp(λ)] < ∞},
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where Tp(λ) is the response time of multiserver jobs under policy p when the arrival rate vector is λ. We also
define the system stability region C as the set of arrival rates such that there exists a policy that stabilizes
the system. Therefore, the system stability region is the union of the stability regions of all possible policies.
When Cp = C for some policy p, we say that the policy p is throughput-optimal. In other words, a policy p
is throughput-optimal if it stabilizes the system whenever there exists a stable policy.

3.3. General Notation
We define the notation X□Y as the independent sum of X copies of the random variable Y : X□Y :=∑X

i=1
Yi, where X ≥ 0 is an integer-valued random variable and the Yi’s are i.i.d samples of Y . We define

the notation (x)+ as the positive part of x. Specifically, (x)+ := max(x, 0). We define the notation X̂(z) as
the z-transform of the probability mass function of an integer-valued random variable X and Ỹ (s) as the
Laplace-Stieltjes transform of the probability density function of a continuous random variable Y .

4. Policies

In this section, we define the policies we are using in the paper. We first define the Most Servers First
(MSF) policy [5, 28], which is known to have shortcomings as discussed in Section 1. Then, based on the
MSF policy, we develop the MSF Quickswap (MSFQ) policy for the setting where there are only class-1
and class-k jobs in the system. We analyze the mean response time of our MSFQ policy in Section 5.3 and
show response time performance improvements with analysis and simulations in Section 6. Inspired by the
improvements obtained with the MSFQ policy, we develop the Static Quickswap policy and the Adaptive
Quickswap policy, each of which is a generalization of MSFQ to support general job class distributions. We
show that the mean response time performance of Static Quickswap and Adaptive Quickswap each compares
favorably to MSF in simulations based on real datacenter traces in Section 6.

4.1. Most Servers First
We analyze the Most Servers First (MSF) policy as described in [5, 28]. Specifically, we define MSF

as a non-preemptive policy that favors jobs with the highest server demands. Whenever a job arrives or
completes, MSF tries to put as many additional jobs as possible into service, starting with the job that
demands the most servers and moving in descending order of server demands. This process ends when
either all servers are utilized or MSF has considered all jobs in the queue.

In the one-or-all case where jobs either require 1 server of k servers, MSF has a somewhat simpler
structure. At any moment in time, the policy either serves 1 class-k job or up to k class-1 jobs. The two
job classes are never served simultaneously. We describe this structure by saying that MSF undergoes two
phases. In phase 1, MSF serves exclusively class-k jobs one at a time. Doing so, MSF uses all servers in
the system and is thus very efficient. In phase 2, MSF serves exclusively class-1 jobs. During phase 2, there
can be up to k class-1 jobs in service, depending on how many class-1 jobs are in the system. Whenever the
number of class-1 jobs in service is less than k, some of the servers’ service capacity is wasted. MSF only
switches between phases when it runs out of jobs of the current class.

Considering the phases of MSF in the two-class case demonstrates why this policy can lead to poor
performance, particularly as load becomes high. The time to complete phase 1 looks like the busy period
of an M/M/1 system started by the jobs that arrived in the prior phase 2. The time to complete phase 2
looks like the busy period of an M/M/k system started by the jobs that arrived during the prior phase 1.
As load increases, both phases will become longer, causing more class-1 jobs to arrive during phase 1 and
vice versa. In this way, MSF amplifies the effect of increased load on mean response time.

4.2. Most Servers First Quickswap (MSFQ)
To reduce the load-amplifying effect found in MSF, we introduce the Most Server First Quickswap

(MSFQ) policy in the one-or-all setting. The goal of MSFQ is to shorten the duration of phase 2 of the MSF
policy so that fewer class-k jobs are allowed to build up during this phase. Specifically, an MSFQ policy is
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associated with a threshold, ℓ, that is used to shorten the periods where class-1 jobs are in service. When
the number of class-1 jobs drops below ℓ, the system stops allowing class-1 arrivals to enter service.

We define the MSFQ policy formally via the following phases with a threshold ℓ ∈ [0, n− 1]:

• Phase 1: Serve class-k jobs exclusively until none remain (nk = 0).
• Phase 2: Serve class-1 jobs until there are less than k class-1 jobs in the system (n1 < k).
• Phase 3: Serve class-1 jobs until there are at most ℓ class-1 jobs in service (n1 ≤ ℓ).
• Phase 4: Complete the class-1 jobs that are already in service (n1 = 0 at the end of the phase). New

class-1 arrivals are not allowed to enter service during this phase.

At the end of phase 4, the server returns to phase 1.
By analyzing response time of the MSFQ system in Section 5.3, we find that the mean response time is

dependent on the number of jobs in the system at the beginning of the phase, and the phase duration — the
amount of time from when the system enters phase i until phase i completes. We let random variable NS

i

denote the number of small (class-1) jobs and NL
i denote the number of large (class-k) jobs at the beginning

of phase i. We also let the random variable Hi denote the duration of the ith phase.
Note that, when ℓ = 0, our MSFQ policy is the same as the MSF policy. We show that the class of

MSFQ policies, irrespective of the threshold ℓ, is throughput optimal in Section 5.1. The intuition behind
throughput-optimality follows from the fact that we always fully utilize all the cores outside of the switchover
period (phases 3 and 4) when there are enough jobs waiting in the system. By searching over the choices
of ℓ, we show that our MSFQ policy offers significant performance improvement over MSF. This confirms
that the load-amplifying effect found in MSF has a huge impact on response time performance.

4.3. Static Quickswap
Our one-or-all MSFQ analysis relies heavily on the fact that there are only two classes of jobs in the

system. The key difficulty in generalizing the MSFQ policy to general job class distributions lies in selecting
the next job to serve, once the phase corresponding to the current class of jobs is complete.

We therefore define the Static Quickswap scheduling policy, which cycles through all classes of jobs in a
fixed order, with the following two phases for each class of jobs:

• Working Phase: Run schedule uj = ⌊k/i⌋1{j = i} and serve class-i jobs exclusively until the number
of idle servers exceeds k − ℓ.

• Draining Phase: Complete the class-i jobs that are already in service. New class-i arrivals are not
allowed to enter service during this phase.

When a given class’s draining phase is complete, the next class in the cycle is served. We do not focus on
the choice of cyclic ordering of the phases – we leave studying the effects of that ordering to future work.

In Remark 1, we give a proof sketch that the Static Quickswap policy achieves optimal stability region
whenever all classes of jobs perfectly divide k, and thus fully utilize the k servers.

We will empirically show that the response time performance of Static Quickswap compares favorably
to MSF in Section 6.

4.4. Adaptive Quickswap
Inspired by MSFQ and Static Quickswap, we develop a policy called Adaptive Quickswap, which allows

multiple classes of jobs at the same time. In the general setting, if the number of servers required by a class
does not perfectly divide the total number of servers, the system cannot fully utilize the server when serving
some class of jobs exclusively. Hence, our Adaptive Quickswap policy prioritizes jobs to serve in MSF order
and switches when it finds that serving these jobs becomes inefficient. The Adaptive Quickswap policy first
admits jobs according to MSF order and then operates according to the following phases:

• Working Phase: Whenever servers become available, the job in the queue with the largest server need
that is at most the number of unoccupied servers is admitted to service. This continues until the
quickswap is triggered.
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• Quickswap trigger: Switch from the working phase to the draining phase when there is a job class that
is in the queue and not in service, and every job class in service has no jobs of that class waiting to
receive service.

• Draining Phase: No jobs may enter service, except for the job in the queue with the largest server
need. Once this job has entered service, switch to the working phase.

5. Analysis of the MSFQ Policy

In this section, we analyze the Most Servers First Quickswap (MSFQ) policy under the one-or-all setting,
where there are only class-1 and class-k jobs. We call the class-1 jobs small jobs and the class-k jobs large
jobs. We begin by proving that the MSFQ policy is throughput-optimal in the simplified setting.

Theorem 1 (MSFQ Throughput-Optimality). In the 2-class one-or-all MSJ system, the Most Servers First
with Quickswap policy has optimal stability region for all thresholds ℓ, 0 ≤ ℓ < n.

We then analyze the mean response time under MSFQ. We observe that the mean response time depends
on two central factors: the amount of time the policy spends in each phase, and how many jobs are in the
system at the beginning of each phase. We therefore approximate the Laplace-Stieltjes transforms of the
distributions of phase durations and the z-transforms of the number of jobs distributions at the beginning
of each phase. We then show how to use these transforms to approximate the mean response time for small
and large jobs. These three steps give the following summary theorem regarding E[T ].

Theorem 2 (MSFQ Summary Theorem). The mean response time under MSFQ, E[T ], depends on the
first and second moments of Hi and Ni for all phases i. Hence, one can compute E[T ] using the transforms
N̂S

i (z) and N̂L
i (z) for all i using Lemmas 1-4.

All of our analysis applies to the original MSF policy, by setting the Quickswap parameter ℓ to 0.

5.1. Throughput-optimality of MSFQ
We now prove that the MSFQ policy achieves optimal stability region, for any Quickswap threshold

parameter ℓ. We start by lower-bounding its stability region:

Theorem 3. In the 2-class one-or-all MSJ system, the Most Servers First with Quickswap policy is positive
recurrent for all thresholds ℓ, 0 ≤ ℓ < k, whenever λ1

kµ1
+

λk

µk
< 1.

Proof. We will use the Foster-Lyapunov theorem, with a carefully designed Lyapunov function.
Recall from Section 3.1 that we represent the system state as the five-tuple (n1, nk, u1, uk, z), where z is

the phase, as defined in Section 4.2. Note that u1 ≤ k, uk ≤ 1, and at least one of u1 and uk must be 0.
Now, we can define our Lyapunov function V (·):

V (n1, nk, u1, uk, z) :=
n1

kµ1
+

nk

µk
+ 1{z = 2} ϵnk

2λk
+ 1{z ̸∈ {1, 2}}(ck − ck−u1), (1)

where ϵ = 1− λ1

kµ1
− λk

µk
, and where c = max

(
2,

λ1

(ℓ− 1)µ1 + 1
,
1

µ1

)
.

Intuitively, the two non-indicator terms ensure negative drift in phases 1 and 2, where all servers are
busy. However, they do not suffice for the other phases, when some servers are idle. The 1{z = 2} term
reduces the negative drift in phase 2 slightly to build up a potential, which is used in the other phases by
the 1{z ̸∈ {1, 2}} term to maintain negative drift in that phase.

We specifically use the continuous-time Foster-Lyapunov theorem [36]. We must demonstrate that this
Lyapunov function has three properties, two of which are defined with reference to the drift E[G ◦ V (·)],
where G is the instantaneous generator operator of the system.
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1. There exists a finite set of states B and a positive constant δ > 0 such that for all states outside of B,
E[G ◦ V (·)] ≤ −δ.

2. There exists a constant C such that for all states, E[G ◦ V (·)] ≤ C.

3. There exists a lower bound D such that for all states, V (·) ≥ D.

Demonstrating Item 1 is the primary challenge. Item 3 holds with D = 0. Item 2 follows from the fact that V
is linear in the two unbounded inputs n1, nk, which change by at most 1 upon any transition. Furthermore,
from any state, the total transition rate is at most λ+max{kµ1, µk}. Hence, there exists an upper bound
on drift from any system state.

It thus remains to prove Item 1, which we show holds with δ = ϵ/2 and the following finite exception set
B, consisting of all states in phase 2 in which n1 = k, so phase 2 has the potential to end, and where nk is
below a threshold, as well as the empty state:

B =
{
(n1, nk, u1, uk, z) |

(
n1 = k&nk ≤ 2λk(c

k − 1)

ϵ
& z = 2

)
or (n1 = 0&nk = 0)

}
.

We specialize our argument based on the current phase of the system (z = 1, 2, 3, 4), and whether the
system is a state on the border of switching phases.

We start with non-border states in phase 1. In this case, uk = 1, z = 1. As a result, the drift of V (·) is:

E[G ◦ V (·)] = λ1

kµ1
+

λk

µk
− uk =

λ1

kµ1
+

λk

µk
− 1 = −ϵ ≤ −δ,

where we use the fact that the drift of n1 is λ1 and of nk is λk.
Next, consider states in phase 1 that are on the border of switching to phase 2. In the subsequent phase

2 state, nk = 0, because the MSFQ policy only switches from serving large jobs to small jobs when there
are no large jobs remaining. As a result, the 1{z = 2} term in (1) is 0 when beginning phase 2, so Item 1
holds throughout phase 1.

Next, in phase 2, in states which are not on the border, we have u1 = k, z = 2, by the definition of phase
2 in Section 4.2. As a result, the drift of V (·) is

E[G ◦ V (·)] = λ1

kµ1
− u1

k
+

λk

µk
+

ϵλk

2λk
= −ϵ+

ϵ

2
= −ϵ/2 = −δ.

When the system is in phase 2 and is on the border of switching to phase 3, note that when a phase
change occurs, the 1{z = 2} term in (1) will change from ϵnk

2λk
to 0, and the 1{z = 3} term will change from

0 to ck − 1. Recall that the exception set B includes all states in phase 2 on the border where nk is below
the threshold: nk ≤ (ck − 1)2λk/ϵ. For all phase 2 border states outside this set, the change in indicators
from phase 2 to phase 3 results in a negative change in V (·), as desired. Thus, Item 1 holds throughout
phase 2.

Finally, in the remaining phases 3 and 4, we use different arguments depending on the value of u1. We
start with states that do not transition directly to phase 1.

First, in the case where u1 = k, the servers are fully occupied by small jobs. In this case, if n1 > k, the
1{z = 2} term in (1) does not change on the next arrival or completion, because u1 = k will remain true
after the next event. Thus,

E[G ◦ V (·)] = λ1

kµ1
− u1

k
+

λk

µk
= −ϵ ≤ −δ.

If u1 = k and n1 = k, the indicator term has a negative instantaneous drift: If a job completes, n1 = n− 1,
so the indicator term becomes ck − 1, while under any other event, the indicator term remains ck. Thus,

E[G ◦ V (·)] = λ1

kµ1
− u1

k
+

λk

µk
− kµ1 = −ϵ− kµ1 ≤ −δ.
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In the case where ℓ < u1 < k, some servers are idle, and the system is in phase 3, so small jobs continue
to enter service. In this case, we upper bound the drift of V as follows:

E[G ◦ V (·)] = λ1

kµ1
− u1

k
+

λk

µk
+ λ1(c

k−u1 − ck−(u1+1)) + u1µ1(c
k−u1 − ck−(u1−1))

=
λ1

kµ1
− u1

k
+

λk

µk
+ ck−u1(1− c)(λ1c

−1 − u1µ1) ≤ 1 + ck−u1(1− c)(λ1c
−1 − (ℓ− 1)µ1) . (2)

Recalling that c = max
(
2,

λ1

(ℓ− 1)µ1 + 1

)
, we substitute into (2). As a result,

E[G ◦ V (·)] ≤ 1 + ck−u1(1− c)(λ1c
−1 − (ℓ− 1)µ1) ≤ 1 + 21(−1)(1) = −1 ≤ −ϵ ≤ −δ .

In the case where 0 < u1 ≤ ℓ: the system is in phase 4, and small jobs are blocked from entering service.
In this case, arriving jobs do not increase u1, so the drift is much simpler:

E[G ◦ V (·)] = λ1

kµ1
− u1

k
+

λk

µk
+ u1µ1(c

k−u1 − ck−(u1−1))

≤ 1 + u1µ1(c
k−u1 − ck−(u1−1)) ≤ 1 + µ1(c− c2) = 1 + µ1c(1− c) .

Recalling that c ≥ 2 and that c ≥ 1

µ
, we find that E[G ◦ V ] ≤ −1, which completes this step.

The remaining case within phases 3 and 4 is the case where u1 = 0. In this case, the system must
be empty, because we would otherwise switch to phase 1. Recall that this case is in the finite set B of
exceptional high-drift states, so it does not affect Item 1.

Having handled states in phases 3 and 4 that do not transition directly to phase 1, we now verify the
drift condition for states where the system may transition from phase 3 or 4 to phase 1. When entering
phase 1, uk = 1, so u1 = 0: All small jobs in service have been completed. As a result, the 1{z ̸∈ {1, 2}}
term in (1) is 0, as desired.

With all states verified, Item 1 holds, so the Foster-Lyapunov theorem demonstrates stability.

We now upper bound the optimal possible stability region in the one-or-all system:

Theorem 4. In the 2-class one-or-all MSJ system, no scheduling policy is stable if λ1/kµ1 + λk/µk ≥ 1,

Proof. Define a job’s work as the product of server need and mean service duration, scaled down by k. The
system can never complete work at rate above 1, because there are k servers. Work arrives to the one-or-all
system at a rate of λ1/kµ1 + λk/µk. If this rate is 1 or more, the system cannot be stable. This argument
can be further formalized by comparing with a resource-pooled M/G/1.

The throughput-optimality of the MSFQ policy now follows by combining Theorems 3 and 4:

Theorem 1 (MSFQ Throughput-Optimality). In the 2-class one-or-all MSJ system, the Most Servers First
with Quickswap policy has optimal stability region for all thresholds ℓ, 0 ≤ ℓ < n.

Remark 1. Note that the same argument as in Theorem 3 applies to the Static Quickswap policy in
the general-class system, allowing us to similarly lower-bound its stability region. A similar argument to
Theorem 3 proves that the Static Quickswap policy is stable whenever

∑
j

λj

⌊k/j⌋µj
< 1, where j ranges over

all classes of server needs in the system.
A similar workload-based argument to Theorem 4 proves that no policy can be stable if

∑
j

λj

(k/j)µj
≥ 1.

If all j are perfect divisors of the total number of classes, and so n/j is always an integer, Static Quickswap
thus has optimal stability region.
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5.2. Approximations in Response Time Analysis
To make the MSFQ system more tractable to response time analysis, we assume in Sections 5.3 and 5.4

that there is at least 1 large job in the system at the beginning of phase 1, and at least k small jobs in
the system at the beginning of phase 2. This approximation ensures that all the phases are not skipped
in a cycle, thus making the system easier to analyze despite being highly accurate as shown in Section 6.
Intuitively, when the system load gets high, there would be at least 1 large job in the system at the beginning
of phase 1 and at least k small jobs in the system at the beginning of phase 2 with high probability.

5.3. Response time analysis
Given that the MSFQ policy is throughput-optimal, we would like to analyze the mean response time of

a stable MSFQ system. To analyze E[T ], we analyze the conditional response time of a small job or a large
job given the phase in which it arrives.

Specifically, in Lemma 2 we will analyze the conditional mean response time, E[TL
1 ], of a large job that

arrives in phase 1, and in Lemma 3 the conditional mean response time, E[TL
2,3,4], of a large job that arrives

in any of phases 2, 3, or 4. Similarly, we analyze the conditional mean response times E[TS
1,4],E[TS

2 ], and
E[TS

3 ] of small jobs that arrive in either phases 1 or 4, phase 2, and phase 3, respectively. We also analyze
mi, the fraction of time the system spends in phase i.

We then characterize the mean response time under MSFQ, E[T ], as follows:

E[T ] =
λk

λ

(
E[TL

1 ]m1 + E[TL
2,3,4](m2 +m3 +m4)

)
+

λ1

λ

(
E[TS

1,4](m1 +m4) + E[TS
2 ]m2 + E[TS

3 ]m3

)
. (3)

Our analysis of E[T ] has three steps. First, in Lemma 1, we show that each mi can be computed as a
function of E[Hi], the mean duration of phase i. Second, in Lemmas 2 to 4, we derive explicit expressions
for the conditional mean response times listed above, and show that these expressions depend on just the
first and second moments of Hi and Ni for all i. Hence, to compute E[T ] it suffices to find the transforms,
N̂S

i (z), N̂L
i (z), and H̃i(s) for all i. Third, we compute the necessary transforms in Section 5.4.

We begin by showing in Lemma 1 that the fraction of time mi that the system spends in state i is
proportional to the phase length E[Hi]. If the phase cycles of the MSFQ policy formed a renewal process,
one could apply a renewal reward argument [25] to prove Lemma 1. Unfortunately, the phase cycles do not
form a renewal process. A long cycle accumulates many arrivals, leading to another long cycle. Hence, to
relate mi and E[Hi], we first prove a generalization of the renewal-reward theorem, Theorem 5, and then
use this theorem to prove Lemma 1.

Theorem 5 (Extended renewal reward theorem). Consider a positive continuous-time stochastic process
{It}t≥0. Associated to the stochastic process is a reward function R(t) specifying the total reward up to time
t, and certain distinguished events which occur at times {Kn}n≥1, whenever the process {It}t≥0 enters a
distinguished subset of its state space.

We define a discrete-time stochastic process {(Xn, Yn, Rn), n ≥ 1}, where Xn is the interarrival time
Kn+1−Kn of the nth step, where Yn = IKn is the state at the beginning of step n, and Rn = R(Kn+1)−R(Kn)
is the reward of step n. We assume the mean duration of each step and the mean reward per step are finite:
E[X] < ∞, E[R] < ∞. We assume that the step durations and step rewards are identically and independently
distributed given the state:

[Xi | Yi = y] ∼ [Xj | Yj = y] ∀i, j, y, [Ri | Yi = y] ∼ [Rj | Yj = y] ∀i, j, y.

Then with probability 1, the average reward accrued by time t in the underlying continuous-time process
converges almost surely to the ratio of the mean reward per step and the mean duration of a step:

R(t)

t
→ E[R]

E[X]
as t → ∞.

Proof. See Appendix A.
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Lemma 1. The fraction of time the MSFQ system spends in phase i is mi =
E[Hi]∑4
i=1 E[Hi]

.

Proof. Follows directly from applying Theorem 5, where we set the “distinguished events” to be the beginning
of phase 1 and the reward function to be the time spent in phase i.

Next, we will show that the conditional mean response times in (3) depend only on the first and second
moments of Hi and Ni for each phase. We handle E[TL

1 ] and E[TS
2 ] in Lemma 2, E[TL

2,3,4] and E[TS
1,4] in

Lemma 3, and E[TS
3 ] in Lemma 4.

To analyze E[TL
1 ] and E[TS

2 ], we relate these terms to an M/G/1 with Exceptional First Service (EFS)
system [9] as defined in Remark 2.

Remark 2 (EFS system). As stated in [9], an M/G/1 with Exceptional First Service (EFS) system serves
two different classes of jobs. Normally, job sizes are drawn i.i.d. according to some job size distribution S.
However, the first job in each busy period experiences exceptional first service, and has a job size distributed
as S′. Let E[WEFS(λ, S, S′)] be the mean work in an EFS system with arrival rate λ. From [9], we have

E[WEFS(λ, S, S′)] =
λE[S2]

2(1− λE[S])
+

λ(E[S′2]− E[S2])

2(1− λE[S] + λE[S′])
.

Let pEFS(λ, S, S′) be the probability that a job arrives to an empty system and experiences exceptional service.
We have that

pEFS(λ, S, S′) =
1− λE[S]

1− λE[S] + λE[S′]
.

Lemma 2. The mean response time of large jobs arriving into phase 1, E[TL
1 ], and the mean response time

of small jobs arriving into phase 2, E[TS
2 ], can be characterized as follows:

E[TL
1 ] =

E[WEFS(λk, Sk, N
L
1 □Sk)]

1− pEFS(λk, Sk, NL
1 □Sk)

+
1

µk

E[TS
2 ] =

E[WEFS(λ1, S1/k, (N
S
2 − k + 1)□(S1/k))]

1− pEFS(λ1, S1/k, (NS
2 − k + 1)□(S1/k)))

+
1

µ1

,

where X□Y is defined in Section 3.3. These expressions only depend on the first and second moments of
S1, Sk, NL

1 , and NS
2 .

Proof. We compare a tagged large job that arrives into phase 1 with a job in the EFS system to compute
its response time. Specifically, we compare the mean work in the system a tagged large job sees on arrival
during phase 1 to the mean work a tagged job that does not receive exceptional first service sees.

Consider the case where jobs arrive into an EFS system with rate λk, job sizes are i.i.d. exponentially
distributed according to Sk except for the jobs that receive exceptional first service, whose job sizes are
sampled i.i.d from NL

1 □Sk. In our MSFQ system, the first job that arrives in phase 1 needs to wait for NL
1

large jobs to complete. In the EFS system, the second job in a busy period also needs to wait for NL
1 large

jobs’ work to complete. The subsequent jobs in the busy period also see the same work in the queue as the
subsequent jobs in phase 1 in our MSFQ system. In other words, a tagged job that arrives into the MSFQ
system during phase 1 sees the same mean work compared to a job that does not receive exceptional service
in the EFS system we consider. Hence, we can use the results in Remark 2 as if the exceptional job size
distribution is S′ ∼ NL

1 □Exp(µk) and the non-exceptional distribution is S ∼ Exp(µk). Then,

E[TL
1 ] = E[mean work a tagged job sees] + 1

µk

= E[WEFS(λk, Sk, N
L
1 □Sk) | no exceptional service] + 1

µk
=

E[WEFS(λk, Sk, N
L
1 □Sk)]

1− pEFS(λk, Sk, NL
1 □Sk)

+
1

µk
. (4)
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The proof for E[TS
2 ] follows a similar argument. We compare a tagged small job that arrives during phase

2 and an EFS system with an arrival rate λ1, exceptional job size distribution S′ ∼ (NS
2 − k + 1)□(S1/k),

and non-exceptional distribution S ∼ S1/k. Then,

E[TS
2 ] =

E[WEFS(λ1, S1/k, (N
S
2 − k + 1)□(S1/k))]

1− pEFS(λ1, S1/k, (NS
2 − k + 1)□(S1/k)))

+
1

µ1
. (5)

Based on Remark 2 and (4), we can see that our E[TL
1 ] formula depends on the first and second moments of

Sk and NL
1 □Sk. It is easy to see that the first and second moments of Sk is E[Sk] = 1/µk and E[S2

k] = 2/µ2
k.

We can compute E[NL
1 □Sk] = E[NL

1 ]/µk because NL
1 is independent from the job sizes. Lastly, to compute

E[(NL
1 □Sk)

2], we have

E[(NL
1 □Sk)

2] =

∞∑
i=0

E[(i□Sk)
2]P{NL

1 = i} =

∞∑
i=0

i+ i2

µ2
k

P{NL
1 = i} =

E[(NL
1 )

2] + E[NL
1 ]

µ2
k

.

Similarly, it suffices to compute first and second moments of S1/k and (NS
2 − k + 1)□(S1/k) to compute

E[TS
2 ]. It is easy to see that E[S1/k] = 1/(kµ1) and E[(S1/k)

2] = 2/(kµ1)
2. Likewise, we can compute

E[(NS
2 − k + 1)□(S1/k)] = E[NS

2 ]/(kµ1). Lastly, to compute E[((NS
2 − k + 1)□(S1/k))

2], we have

E[((NS
2 − k + 1)□(S1/k))

2] =
E[(NS

2 )
2]− (2k − 3)E[NS

2 ] + k2 − 3k + 2

k2µ2
1

.

Therefore, we have shown that it suffices to compute the first and second moments of NL
1 and NS

2 to compute
E[TL

1 ] and E[TS
2 ].

We now analyze the mean response time over all large jobs that arrive in any of phases 2, 3, or 4, and
the mean response time over all small jobs that arrive in either phases 1 or 4.

Lemma 3. The mean response time E[TL
2,3,4] of large jobs which arrive during phases 2, 3, or 4, and the

mean response time E[TS
1,4] of small jobs which arrive during phases 1 or 4, are given by:

E[TL
2,3,4] =

(λk/µk + 1)E[(H2 +H3 +H4)
2]

2E[H2 +H3 +H4]
+

1

µk
, E[TS

1,4] =
(λ1/(kµ1) + 1)E[(H4 +H1)

2]

2E[H4 +H1]
+

1

µ1
.

Proof. Consider a tagged large job that arrives into the system in any of phases 2, 3, or 4. On arrival, this
tagged job sees all the large job arrivals between the start of the most recent phase 2 and the current time
in the system. Hence, the tagged job needs to wait until these jobs are completed in the upcoming phase
1 before it can begin receiving service. Let HL

a be the age of the H2 + H3 + H4 period, the elapsed time
from the beginning of phase 2 an arrival during this period sees, and HL

e be the excess of the H2 +H3 +H4

period, the time until the end of phase 4 an arrival during this period sees. On average, the tagged large
job sees λkE[HL

a ] large jobs in the system at the time it arrives into the system. Hence, the mean work the
large job sees is λk

µk
E[HL

a ].
The response time of this tagged large job is composed of 3 elements: the time before any large job

receives service, the mean work the tagged job sees in the system, and the time to serve itself. Hence,

E[TL
2,3,4] = E[HL

e ] +
λk

µk
E[HL

a ] + E[Sk]. (6)

Combining Theorem 5, standard results on ages and excess [25], and (6), we have:

E[TL
2,3,4] =

E[(H2 +H3 +H4)
2]

2E[H2 +H3 +H4]
+

λk

µk

(λk/µk + 1)E[(H2 +H3 +H4)
2]

2E[H2 +H3 +H4]
+

1

µk
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=
(λk/µk + 1)E[(H2 +H3 +H4)

2]

2E[H2 +H3 +H4]
+

1

µk
.

Similarly, consider a tagged job that arrives into the system in either phase 4 or phase 1. On arrival,
this tagged job sees all of the small job arrivals between the start of the most recent phase 4 and the current
moment. let HS

a and HS
e be the age and excess of this H4 +H1 period. The tagged small job that arrives

during phase 4 or phase 1 also needs to wait for an excess and λ1

kµ1
E[HS

a ] of work before receiving service.
Its response time is composed of the excess duration, the mean work it sees on arrival, and the time it takes
to complete:

E[TS
1,4] = E[HS

e ] +
λ1

kµ1
E[HS

a ] + E[S1] =
E[(H4 +H1)

2]

2E[H4 +H1]
+

λ1

kµ1

E[(H4 +H1)
2]

2E[H4 +H1]
+

1

µ1

=
(λ1/(kµ1) + 1)E[(H4 +H1)

2]

2E[H4 +H1]
+

1

µ1
.

Therefore, we have shown that it suffices to compute the first and second moments of Hi in order to
compute E[TL

2,3,4] and E[TS
4,1].

We finish by analyzing the mean response E[TS
3 ] of small jobs that arrive during phase 3.

Lemma 4. The mean response time E[TS
3 ] of small jobs that arrive during phase 3 is given by:

E[TS
3 ] =

∑∞
j=ℓ+1

Cj

λ1+min(k,j)µ1

k+(j−k+1)+

kµ1∑∞
j=ℓ+1

Cj

λ1+min(k,j)µ1

,

where Cj is defined recursively as follows, for each positive integer j:

Cj =



λ1 + (ℓ+ 1)µ1

(ℓ+ 1)µ1
1{ℓ+ 1 ≤ k − 1} j = ℓ+ 1

Cj−1
λ1(λ1 + jµ1)

jµ1(λ1 + (j − 1)µ1)
+

λ1 + jµ1

jµ1
1{j ≤ k − 1} ℓ+ 1 < j ≤ k

λ1

kµ1
Ck j > k

.

Proof. Consider the stochastic process {n1(t)} during phase 3. By the definition of MSFQ, n1 = k − 1 at
the beginning of phase 3 and n1 = ℓ at the end of phase 3. The process {n1(t)} forms an absorbing Markov
chain corresponding to an M/M/k system with arrival rate λ1, and job size distribution S1. In order to
characterize the mean response time of a small job that arrives in phase 3, we condition the arrival based on
the state it sees in {n1(t)}. Therefore, it suffices to compute Cj , the number of visits to state j in {n1(t)},
to characterize the probability a small job arrives in state j.

We first consider the case where there are at least k + 1 small jobs in the system. When j ≥ k + 1, an
arrival from state j − 1 or j will accrue one visit to state j,

Cj = Cj−1
λ1

λ1 + kµ1
+ Cj

λ1

λ1 + kµ1
= Cj−1

λ1

kµ1
.

Therefore, for all j ≥ k+1, we have Cj =
λ1

kµ1
Ck. When ℓ+2 ≤ j ≤ k, an arrival from state j − 1 or j will

accrue one visit to state j with different rates:

Cj = Cj−1
λ1

λ1 + (j − 1)µ1
+ Cj

λ1

λ1 + jµ1
+ 1{j ≤ k − 1} = Cj−1

λ1(λ1 + jµ1)

jµ1(λ1 + (j − 1)µ1)
+

λ1 + jµ1

jµ1
1{j ≤ k − 1}.

Finally, we handle Cℓ+1 separately:

Cℓ+1 = Cℓ+1
λ1

λ1 + (ℓ+ 1)µ1
+ 1{ℓ+ 1 ≤ k − 1} =

λ1 + (ℓ+ 1)µ1

(ℓ+ 1)µ1
1{ℓ+ 1 ≤ k − 1}.
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To compute E[TS
3 ], note that the response time of a small job that arrives during phase 3 depends only

on the number of small jobs n1(t) when the small job arrives. A small job that sees j jobs on arrival has

expected response time k + (j − k + 1)+

kµ1
. As a result, we can compute E[TS

3 ] by conditioning on n1(t) seen
on arrival. By PASTA, this is simply the time-average distribution of the number of jobs seen during phase
3, which is given by the pre-absorption average of Ci. Specifically,

E[TS
3 ] =

∑∞
j=ℓ+1 E[total time spent in state j] · E[TS

3 | the job arrives during state j]∑∞
j=ℓ+1 E[total time spent in state j]

=

∑∞
j=ℓ+1

Cj

λ1+min(k,j)µ1

k+(j−k+1)+

kµ1∑∞
j=ℓ+1

Cj

λ1+min(k,j)µ1

.

We have now shown that to compute the E[Ti] terms and the mi terms in (3) for each phase i, it suffices
to compute the first and second moments of Hi and Ni for all phases i. To compute these first and second
moments, it suffices in turn to compute the transforms of Hi and Ni for all i. We tackle these transforms
in the following section.

5.4. Phase Duration Analysis
In this section, we compute the required transforms of Hi and Ni for all phases i in order to compute

their first and second moments. Taken together with Lemmas 1-4, this completes the proof of Theorem 2.
In our analysis, it will be useful to refer to busy periods of the system when serving either small or large

jobs. We define these busy periods as follows.

Remark 3 (Busy Periods). We consider a busy period started by a random amount of work W to be the
time required for an M/G/1 system to empty when starting with W work in the system. We let BL

W be the
duration of this busy period in an M/G/1 where only large jobs arrive, with arrival rate λk. Similarly, let
BS

W be the duration of this busy period in an M/G/1 where only small jobs arrive, with arrival rate λ1.
Using standard queueing-theoretic techniques [25], we have

B̃L
W (s) = W̃ (s+ λk − λkB̃L

Sk
(s)), B̃S

W (s) = W̃ (s+ λ1 − λ1B̃S
S1
(s)).

To begin, we observe that the duration of phase 1 is equal to a busy period started by the number of
large jobs that arrive during the preceding phases 2-4. Similarly, the duration of phase 2 is a busy period
started by the number of small jobs that arrive during the preceding phases 4 and 1. This insight allows us
to analyze H̃1(s) and H̃2(s) in Lemma 5.

Lemma 5. The transforms of the distributions of phase 1 and phase 2 durations are given by:

H̃1(s) = N̂L
1 (B̃

L
Sk
(s)), H̃2(s) = N̂S

2 (B̃
S
S1
(s))(B̃S

S1
(s))1−k.

Proof. At the beginning of phase 1, the system has NL
1 □Sk amount of work in terms of large jobs. At the

end of phase 1, the system empties all the large jobs in the system. Therefore, the length of phase 1 can be
seen as a busy period for large jobs started by NL

1 □Sk amount of work.

H̃1(s) = B̃L
NL

1 □Sk
(s) = N̂L

1 (S̃k(s+ λk − λkB̃L
Sk
(s))) = N̂L

1 (B̃
L
Sk
(s)) .

Here, we use the fact that X̃□Y (s) = X̂(Ỹ (s)) where X is either independent of Y or is a stopping time
relative to the sequence of durations Y [25].

Similarly, the system has NS
2 small jobs at the beginning of phase 2 and will have k− 1 small jobs at the

end of phase 2. In this case, the system finishes NS
2 − k + 1 jobs over the course of phase 2. Therefore, the

length of phase 2 can be seen as a busy period for small jobs started by (NS
2 − k + 1)□Sk amount of work.

H̃2(s) =
˜BS

(NS
2 −k+1)□Sk

(s) = ̂NS
2 − k + 1(B̃S

S1
(s)) = N̂S

2 (B̃
S
S1
(s))(B̃S

S1
(s))1−k .
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Next, we compute the z-transforms of the number of jobs in the system at the start of each phase. We
note that our response time analysis depends only on the moments of NL

1 and NS
2 , hence it suffices to

compute z-transforms N̂L
1 (z) and N̂S

2 (z). We show how these transforms depend on the Laplace transforms
of the phase durations in Lemma 6.

Lemma 6. The z-transforms of the distributions of the number of large jobs at the beginning of phase 1 and
the number of small jobs at the beginning of phase 2 are given by:

N̂L
1 (z) = H̃2(λk(1− z))H̃3(λk(1− z))H̃4(λk(1− z))

N̂S
2 (z) = H̃2(λk(1− β(z)))H̃3(λk(1− β(z)))H̃4(λk(1− β(z)) + λ1(1− z)),

where β(z) = B̃L
Sk
(λ1(1− z)).

Proof. The number of large jobs at the beginning of phase 1 can be seen as the number of arrivals accrued
during a H2 +H3 +H4 time period because the large jobs are emptied at the end of phase 1. Formally, we
have NL

1 ∼ AL
H2+H3+H4

, where AL
X denotes the number of large job arrivals in X seconds.

Similarly, the number of small jobs at the beginning of phase 2 can be seen as the number of arrivals
accrued during phase 4 and phase 1. However, note that phases 4 and 1 are not independent, as they are
positively correlated. Intuitively, a longer phase 4 will result in a longer phase 1 because of more large jobs
arriving into the system. In this case, we use H4,1 to denote the length of the joint phase 4 and phase 1
period. As a result, we have NS

2 ∼ AS
H4,1

. Note that, if we are only interested in the mean of this joint
period, E[H4,1] = E[H4] + E[H1] due to the linearity of expectations.

Next, we use the standard transform formulas for Poisson arrivals during a random interval: ÂL
X(z) =

X̃(λk(1− z)), ÂS
X(z) = X̃(λ1(1− z)) [25]. Plugging into NL

1 , we have

N̂L
1 (z) =

̂AL
H2+H3+H4

(z) = ˜H2 +H3 +H4(λn(1− z)) = H̃2(λk(1− z))H̃3(λk(1− z))H̃4(λk(1− z)).

Plugging into NS
1 , we have

N̂S
2 (z) = ÂS

H4,1
(z) = H̃4,1(λ1(1− z)) =

∫ ∞

0

H̃4,1(λ1(1− z) | H4 = x)P{H4 = x}dx

=

∫ ∞

0

N̂L
1 (β(z) | H4 = x)e−λ1(1−z)xP{H4 = x}dx

= H̃2(λk(1− β(z)))H̃3(λk(1− β(z)))H̃4(λk(1− β(z)) + λ1(1− z)).

Compared to H1 and H2, the durations H3 and H4 are relatively straightforward to analyze. Specifically,
the length of phases 3 and 4 depends only on the definition of the number of servers, k, and MSFQ threshold,
ℓ. These phases are independent of the lengths of other prior phases. We compute H̃3(s) and H̃4(s) in
Lemma 7 and Lemma 8, deferring the proofs to Appendix B:

Lemma 7. The Laplace transform of the duration of phase 3 is given by: H̃3(s) =
∏n−1

j=ℓ+1
H̃3,j(s), where

H3,j is the transit time from j small jobs in the system to j − 1 small jobs in the system, with transform:

H̃3,j(s) =


jµ1

λ1 + jµ1 + s− λ1H̃3,j+1(s)
j < k

B̃S
S1
(s) j = k .

(7)

Lemma 8. The Laplace transform of the duration of phase 4 is given by: H̃4(s) =
∏ℓ

j=1

jµ1

jµ1 + s
.

Given Lemmas 5-8, we are now ready to prove the summary theorem, Theorem 2.
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Theorem 2 (MSFQ Summary Theorem). The mean response time under MSFQ, E[T ], depends on the
first and second moments of Hi and Ni for all phases i. Hence, one can compute E[T ] using the transforms
N̂S

i (z) and N̂L
i (z) for all i using Lemmas 1-4.

Proof of Theorem 2. Lemmas 2-4 show that the mean response time of an MSFQ policy, E[T ], depends on
the system parameters (k, λ1, λk, µ1, µk) and the first and second moments of Hi and Ni for all phases i.
Lemmas 5-8 show how to compute the transforms of Hi and Ni that suffice to compute these moments.
Specifically, while the formulas in Lemma 5-8 are recursive, the necessary moments can be computed by
differentiating these formulas and solving a system of X equations. Plugging these moments into (3) and
Lemma 1 yields an approximation of E[T ] as desired. A calculator that performs these computations and
returns the desired approximation will be available online (removed for anonymity).

6. Simulation Results

In Section 5, we derived an approximation of the mean response time under MSFQ in the one-or-all case.
This raises two important questions. First, how does MSFQ compare to other non-preemptive scheduling
policies in the one-or-all case? And second, how do these results generalize to workloads with additional
classes of jobs? To address these questions, we now evaluate MSFQ and several policies from the literature,
comparing the mean response time predicted by our theoretical results to simulations of various other
policies. Specifically, we compare against MSF, against the First-Fit backfilling policy [20], and against the
nonpreemptive Markovian Service Rate policy (nMSR) [12]. We will show that our approximations from
Section 5 are highly accurate, and that MSFQ can outperform all competitor policies by orders of magnitude.

We begin by simulating policies in the one-or-all case in Section 6.2 to show that our response time
analysis is accurate and that MSFQ is by far the best of the non-preemptive scheduling policies. We then
provide two natural generalizations of MSFQ to workloads with more than two job classes. We show that
these generalizations, Adaptive Quickswap and Static Quickswap, perform well under more general workloads
using both synthetic traces (Section 6.3) and traces from the Google Borg cluster scheduler (Section 6.4).

For simulation results, we wrote a discrete event simulation framework specifically developed for MSJ sys-
tems. Our simulator implements a wide range of scheduling policies and can either generate synthetic work-
loads or use real-world traces. This framework will be made available on GitHub (omitted for anonymity).

6.1. Simulation Metrics
To evaluate our simulations, we will use a variety of response time metrics. For each class of jobs, j, we

define E[T (j)] to be the mean response time of class-j jobs. This allows us to examine the mean response
time of each class separately to see how a policy balances the response times between job classes.

Assuming a workload consisting of m job classes, we can write the mean response time across all jobs as

E[T ] =
k∑

j=1

pjE[T (j)].

We note, however, that as the number of job classes grows and the server needs and job sizes vary more
between job classes, E[T ] is not always the most meaningful metric. Specifically, in more complex cases, a
large fraction of the system load can be composed of a small fraction of the jobs in the system. These jobs,
which generally have large server needs and large mean job sizes, will be mostly ignored in the computation
of E[T ] because their pi terms are small. For example, we find that in the Google Borg cluster scheduler,
85.8% of the system load is contributed by just 0.34% of the jobs in the workload. This aligns with the
findings of the original Google Borg papers [38, 35].

Modern cluster schedulers cannot simply ignore such a large fraction of the system load. In practice,
customers (whether internal or external to an organization) are billed for the number of server hours they
consume. Because ignoring users who account for 85.8% of this revenue is not sustainable for data center

17



1 2 3 4 5 6 7 8
Arrival Rate

0

20

40

60

80

100

M
ea

n
R

es
po

ns
e

Ti
m

e

MSF
nMSR
First-Fit
MSFQ (Simulated)
MSFQ (Predicted)

(a) Overall mean response time
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(b) Overall weighted mean response time
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(c) Mean response time of small jobs
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(d) Mean response time of large jobs

Figure 2: Mean response time as a function of job arrival rate in a one-or-all MSJ system with k = 32, p1 = 0.9, and
µ1 = µk = 1. MSFQ beats all other non-preemptive policies in terms of both mean response time and weighted mean response
time. In particular, MSFQ can be two orders of magnitude better than MSF and nMSR with respect to both metrics.

operators, we propose a weighted mean response time metric that increases the weight of classes with high
server needs and large average job sizes. Specifically, we define weighted mean response time as

E[Tw] =

∑k
j=1 j/µj · pjE[T (j)]∑k

i=1 i/µi · pi
=

k∑
j=1

ρj
ρ
E[T (j)],

where ρj =
jλj

µj
is the system load contributed by class-j jobs and ρ =

k∑
j=1

ρj is the total system load. Under

this definition, each job class’s weight corresponds to the fraction of load it contributes to the system. Said
another way, a class’s weight corresponds to the server-hours used by the class (cost paid) as a fraction of
the total server usage in the system (total system revenue).

6.2. Two job classes: one-or-all MSJ
We first evaluate the performance of MSFQ with ℓ = k−1 in the one-or-all setting analyzed in Section 5.

We compare MSFQ to MSF, as well as the First-Fit and nMSR policies examined in the prior work. Our
simulations consider a system with k = 32 servers, where 90% of job arrivals are small jobs and the mean
job size is 1 for both large and small jobs. That is, p1 = 0.9, pk = 0.1, and µ1 = µk = 1. These parameters
reflect the common setting where 10% of the jobs (the large jobs) comprise about 80% of the load on the
system. Fig. 2 shows the effect of varying the arrival rate, λ, on weighted and unweighted mean response
time. We see that our analysis of the mean response time under MSFQ is highly accurate at a wide range of
arrival rates. Furthermore, our MSFQ policy achieves the best weighted and unweighted mean response time
in all cases, outperforming the competitor policies by two orders of magnitude when the arrival rate is high.
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Figure 3: Service phase durations for the MSFQ policy
evaluated in Figure 2.

We also measure the mean response time for each job
class in Figs. 2c and 2d. These results confirm that
MSFQ improves both classes’ mean response time in-
dividually in order to improve overall mean response
time, and especially improves the mean response time
of large jobs. Note that the choice of weighted versus
unweighted mean response time impacts the ordering
of the competitor policies. The nMSR and First Fit
policies benefit in the unweighted case by prioritizing
small jobs, while MSF benefits in the weighted case
by prioritizing large jobs. In both cases, none of the
baseline policies can match MSFQ.

Our response time analysis in Section 5.3 con-
firmed that MSFQ improves mean response time

by switching faster between service phases.
To illustrate this point, we measured the phase durations of MSF and MSFQ during the above simulations.
Recall that MSF is equivalent to an MSFQ policy with threshold ℓ = 0, and the MSFQ policy in this case
uses ℓ = k − 1. Hence, both policies have full server utilization in phases 1 and 2, and use the remaining
phases to switch the class of job in service. Fig. 3 compares the phase durations of these policies, showing
that MSFQ has shorter switching phases, leading to much shorter durations of phases 1 and 2.
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Figure 4: Impact of the threshold value, ℓ, on mean re-
sponse time of the MSFQ policy evaluated in Figure 2.

We further illustrate this point in Fig. 4 by ex-
amining the effect of the threshold value, ℓ, on the
mean response time of MSFQ. Using any threshold
value larger than 0 has a dramatic benefit on mean
response time by allowing faster switchover times and
shorter phase durations. We also note that, while set-
ting an arbitrarily large threshold could waste capac-
ity by causing the system to switch too frequently, this
effect is limited in practice. Hence, while our theoret-
ical results can be used to select the optimal value of
ℓ, a good heuristic appears to be to choose ℓ = k − 1.

6.3. Generalizing to Additional Job Classes
While MSFQ has superb performance in the one-

or-all case, it is not immediately clear how these re-
sults generalize to cases with additional job classes.
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Figure 5: Weighted mean response time as a function of
job arrival rate in a 4-class MSJ system with k = 15,
p1 = 0.5, p2 = 0.25, p5 = 0.2, and p15 = 0.05.

Hence, we now simulate the Static Quickswap and
Adaptive Quickswap policies defined in Section 4.
These policies generalize MSFQ to cases with many
job classes, using the Quickswap mechanism to try
and maintain the short phase durations of MSFQ.
Given the added variability in server needs, we fo-
cus on weighted mean response time in this multiclass
case. We consider a system with k = 15 servers and
4 classes: class-1, class-3, class-5, and class-15. Each
class has a mean job size of 1, and we set p1 = 0.5,
p3 = 0.25, p5 = 0.2, and p15 = 0.05. By Remark 1, it
is possible to stabilize the system when λ < 5. Note
that we have chosen the server needs to divide k so
that any one class of jobs can utilize all k servers.

Figure 5 shows that Static and Adaptive Quick-
swap both provide an advantage over the competitor
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policies. Adaptive Quickswap performs the best in practice because it uses more complex switching logic
to avoid having unused servers. Static Quickswap performs slightly worse than Adaptive Quickswap in all
cases. However, Static Quickswap is guaranteed to be throughput-optimal by Remark 1, while Adaptive
Quickswap has no such guarantee. Both policies outperform MSF and First-Fit in all cases.

6.4. Workloads Derived from Google Borg Traces
To further evaluate the Adaptive and Static Quickswap policies, we simulate these policies using work-

loads derived from the Google Borg cluster scheduler traces [35]. Specifically, we use the methodology of [39]
to extract a workload with the same arrival rates, mean job sizes, and server needs as the Google Borg traces.
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Figure 6: Weighted mean response time as a function of job
arrival rate for MSJ systems serving a Google Borg workload.
Here, k = 2048 and the workload is composed of 26 classes
based on real-world trace data.

Our workload consists of 26 job classes from Cell
B of the 2019 Borg traces [35]. We set k based on
the server need of the largest class, so k = 2048 in
our experiments. The resulting stability region
is defined by λ < 4.94.

Figure 6 shows the benefit of using Static
and Adaptive Quickswap instead of a competitor
policy. While all policies remain stable, Adap-
tive and Static Quickswap are once again domi-
nant, improving weighted mean response time by
two orders of magnitude when the arrival rate is
high. Note that, due to its poor performance in
prior experiments, nMSR is omitted from Fig-
ure 6. These results generally match the syn-
thetic workloads of Section 6.4, showing a signifi-
cant benefit to using Adaptive Quickswap. How-
ever, even using Static Quickswap provides a 5x

reduction in weighted mean response time compared to the next closest competitor, MSF.

7. Conclusion

This paper describes new, non-preemptive scheduling policies for multiserver jobs. While the non-
preemptive MSF policy has been observed to remain stable at high loads, and while we prove it is throughput-
optimal in the one-or-all case, it suffers from high mean response time because it switches service phases
too slowly. We introduce the MSFQ class of policies, and its generalizations, Static Quickswap and Adap-
tive Quickswap. These Quickswap policies use a queue length threshold to decide when to switch phases,
allowing for the design of policies that switch phases much faster than MSF. We prove that MSFQ is
throughput-optimal in the one-or-all case, analyze the mean response time of MSFQ in the one-or-all case,
and demonstrate the benefits of Quickswap policies in simulations based on traces from the Google Borg
cluster scheduler.

Before this paper, there were two state-of-the-art choices for non-preemptive multiserver scheduling.
There was MSF, which suffers from slow phase changes, and the class of MSR policies, which use a Markov
chain to select schedules and allow phase changes at a faster rate. The drawback to MSR policies is that
their scheduling decisions do not consider queue length information. As a result, an MSR policy may waste
system capacity by reserving servers for jobs that are not in the system. Hence, before MSFQ, one had to
choose between either high server utilization and slow phases switching, or low server utilization and fast
phase switching. This paper shows that MSFQ policies get the best of both worlds, using queue length
information to switch phases faster without wasting servers. Although MSFQ is more complex than either
of the prior policies, we still provide an accurate analysis of its mean response time in the one-or-all case.
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Appendix A. Proof of Theorem 5

Theorem 5 (Extended renewal reward theorem). Consider a positive continuous-time stochastic process
{It}t≥0. Associated to the stochastic process is a reward function R(t) specifying the total reward up to time
t, and certain distinguished events which occur at times {Kn}n≥1, whenever the process {It}t≥0 enters a
distinguished subset of its state space.

We define a discrete-time stochastic process {(Xn, Yn, Rn), n ≥ 1}, where Xn is the interarrival time
Kn+1−Kn of the nth step, where Yn = IKn is the state at the beginning of step n, and Rn = R(Kn+1)−R(Kn)
is the reward of step n. We assume the mean duration of each step and the mean reward per step are finite:
E[X] < ∞, E[R] < ∞. We assume that the step durations and step rewards are identically and independently
distributed given the state:

[Xi | Yi = y] ∼ [Xj | Yj = y] ∀i, j, y, [Ri | Yi = y] ∼ [Rj | Yj = y] ∀i, j, y.

Then with probability 1, the average reward accrued by time t in the underlying continuous-time process
converges almost surely to the ratio of the mean reward per step and the mean duration of a step:

R(t)

t
→ E[R]

E[X]
as t → ∞.

Proof. First, note that the discrete-time stochastic process {Yn} forms a Markov chain, because it is defined
by the moments when {It} enters a distinguished subset of states. Note also that {Yn} is positive recurrent,
because {It} is positive recurrent.

Let 0 denote an arbitrary state in the state space of {Yn}. We define a zero-cycle as a renewal cycle
that begins at every distinguished time Kn such that Yn = 0. Let Am be the reward of the mth zero-cycle
and let Bm be the length of the mth zero-cycle in time, and let A and B be the corresponding stationary
random variables. Applying the conventional Renewal Reward theorem to the {It} process,

R(t)

t
→ E[A]

E[B]
, as t → ∞. (A.1)

To evaluate the reward per zero-cycle and the length of a zero-cycle, let Zm be the number of steps in the
mth zero-cycle. Zm is the intervisit time of the {Yn} Markov chain to the 0 state, so Zm is an i.i.d. random
variable. Let Z denote the corresponding stationary random variable. Because {Yn} is positive recurrent,
E[Z] < ∞. Let Cm be the number of steps up to the beginning of the mth zero-cycle.

Then we can write the reward and length of a given zero-cycle as follows:

Am =

Zm∑
n=1

RCm+n, Bm =

Zm∑
n=1

XCm+n
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We now apply the general form of Wald’s equation, which states that

E[Am] = E

[
Zm∑
n=1

E[RCm+n]

]
E[Bm] = E

[
Zm∑
n=1

E[XCm+n]

]
By the conditional independence of R given Y , RCm+n only depends on the offset n, not the starting point
Cm. Thus,

E[A] = E

[
Z∑

n=1

E[Rn]

]
, E[B] = E

[
Z∑

n=1

E[Xn]

]
,

By conditioning on Z, we can rewrite these expectations:

E[A] =

∞∑
n=1

E[Rn1{Z ≥ n}] E[B] =

∞∑
n=1

E[Xn1{Z ≥ n}] (A.2)

But we can similarly write E[R] based on the number of steps since the most recent beginning of a zero
cycle. Specifically, we can apply renewal reward to the {Yn} process where the reward function is R(t) in
the nth step into a zero-cycle, and zero otherwise, and where the reward function is 1 in the nth step into
a zero-cycle, and zero otherwise. By doing so we, find that

E[nth step reward] = E[Rn1{Z ≥ n}]
E[Z]

E[nth step length] = E[Xn1{Z ≥ n}]
E[Z]

Summing over all n, we find that

E[R] =

∞∑
n=1

E[Rn1{Z ≥ n}]
E[Z]

E[X] =

∞∑
n=1

E[Xn1{Z ≥ n}]
E[Z]

(A.3)

Combining (A.2) and (A.3), we find that

E[A] = E[R]E[Z], E[B] = E[X]E[Z].

Substituting into (A.1), we find that

R(t)

t
→ E[R]E[Z]

E[X]E[Z]
=

E[R]

E[X]
, as t → ∞.

Appendix B. Proofs of Lemma 7 and Lemma 8

Lemma 7. The Laplace transform of the duration of phase 3 is given by: H̃3(s) =
∏n−1

j=ℓ+1
H̃3,j(s), where

H3,j is the transit time from j small jobs in the system to j − 1 small jobs in the system, with transform:

H̃3,j(s) =


jµ1

λ1 + jµ1 + s− λ1H̃3,j+1(s)
j < k

B̃S
S1
(s) j = k .

(7)

Proof. To characterize H3,j , we condition on the first event that happens during the H3,j period. When the
first event is an arrival, the remainder of H3,j consists of a H3,j+1 period, followed by another independent
H3,j period. When the first event is a completion, the period ends. In particular, we have

H3,j =

{
Exp(jµ1 + λ1) +H3,j+1 +H3,j next event is an arrival
Exp(jµ1 + λ1) next event is a departure

.
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Note that H3,k ∼ BS
S1

as the time going from having k to k − 1 small jobs is the busy period because the
completion rate of small jobs here is nµ1. Then, the phase duration of phase 3 is the sum of these periods.
Formally, H3 =

∑n−1

j=ℓ+1
H3,j . Then, by standard transform techniques, Lemma 7 holds.

Lemma 8. The Laplace transform of the duration of phase 4 is given by: H̃4(s) =
∏ℓ

j=1

jµ1

jµ1 + s
.

Proof. In phase 4, no further small job arrivals are allowed into service, and there are ℓ small jobs at the
beginning of phase 4. Therefore, we can write H4 as a sum of i.i.d. exponential distributions: H4 =
ℓ∑

j=1

Exp(jµ1). Therefore, by standard transform techniques, H̃4(s) =

ℓ∏
j=1

˜Exp(jµ1)(s) =

ℓ∏
j=1

jµ1

jµ1 + s
.
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