Zhongrui Chen

201 S Columbia St Chapel Hill, NC 27514 ☑ jcpwfloi@cs.unc.edu jcpwfloi.com

Education

- 2022-present University of North Carolina at Chapel Hill, Ph.D. Computer Science, advisor: Benjamin Berg
 - 2018–2022 University of North Carolina at Chapel Hill, B.S. Computer Science, B.S. Mathematics

Research Interests

Stochastic Modeling, Queueing Theory, Scheduling, Caching

Publications

04.2024 Simple Policies for Multiresource Job Scheduling, MAMA. SIGMETRICS Performance Evaluations Review 2024

Zhongrui Chen, Isaac Grosof, Benjamin Berg

Research Experience

08.2022- Graduate Research Assistant, advised by Benjamin Berg

- Present O Analyzing delay of low-complexity and throughput-optimal virtual machine scheduling algorithms.
 - Development of Lyapunov drift arguments to analyze stability and delay in virtual machine scheduling algorithms.
 - O Create discrete event simulations to evaluate throughput and delay under various scheduling policies.
 - $\odot\,$ Also studied resource allocation in open-source ClickHouse database.
- 08.2021- Undergraduate Honors Thesis, advised by Praneeth Chakravarthula
- 05.2022 \odot Implemented numerical methods to reason dynamical systems from limited observations.
 - $\odot\,$ Experimented with physics-aware video interpolation and extrapolation.
 - $\odot\,$ Coded physical simulators to generate dataset for learning.

01.2021- Undergraduate Research Assistant, advised by Henry Fuchs under UNC Graphics & VR Group

- $06.2021~\odot$ Worked on reconstructing novel views from a single facial image input.
 - Implemented differentiable renderer and mesh fitting with PyTorch3d.
 - \odot Contributed an variational autoencoder and texture decoder to reconstruct texture maps for novel views.
 - Identified the bottleneck, optimized the training pipeline, and fixed memory leaks. Prebuilt and prefetched the dataset and made training 10x faster.

08.2020- Mentored Research, advised by Jasleen Kaur

- 12.2020 Congestion Control: Past, Present and Future (Final Report)
 - O Generalized the limitations and contributions of the congestion control algorithms.
 - $\odot\,$ Dived into the theory that converts congestion control into a socially concave game.
 - Researched fairness and scavenger protocol in congestion control.

Teaching Experience

Undergraduate COMP 572 Computational Photography, COMP 524 Programming Languages, COMP 521 Databases Teaching and COMP 411 Computer Organization. Assistant

Assistant

Awards

05.2024 SIGMETRICS 2024 Student Travel Grant, \$1750

Class Projects

08.2020- Lisp Interpreter, COMP 524 Programming Languages

- 12.2020 O Coded a lisp interpreter in Java.
 - O Implemented basic S-expression primitives, lists, atoms, logical operators and conditionals.
 - $\odot\,$ Implemented lambda function expressions, recursions, curry, and stringify.

01.2020- 64-bit JOS Kernel, COMP 790 OS Implementation

- 05.2020 O Adapted from MIT 6.828, but in 64-bit version.
 - Implemented page translation, context switch, trap handler.
 - Implemented cooperative multitasking, Copy on Write (CoW), and Inter-Process Communication (IPC).
 - $\odot\,$ Supported pipe, redirection and basic shell functions.
 - Coded a network driver based on the Intel 82540EM chip.
- 01.2020- Distributed Systems, COMP 533 Distributed Systems
- 05.2020 O Used Java RMI, asynchronous RPC library, and NIO to enable process communication across multiple computers.
 O Implemented Paxos consensus algorithm to ensure consistency.
 Composted to CLU to show see state superconjunction.
 - Connected to GUI to showcase state synchronization.

08.2019- Basic Graphics Engine, COMP 475 Computer Graphics

- 12.2019 \odot Implemented a C++ library that provides efficient APIs for geometric primitives, scan conversion, clipping, transformations, compositing, texture sampling, gradients, antialiasing, filtering, parametric curves, and geometric stroking.
 - O Used Intel MMX features to accelerate vector operations.

Programming Languages

- Imperative C/C++, Rust, Java
- Functional Haskell, Lisp
- Scripting Python, JavaScript, Shell (and variants)
 - Others LATEX, HTML5/CSS3, Matlab, Mathematica