Improving Nonpreemptive Multiserver Job Scheduling with Quickswap

Zhongrui Chen®, Adityo Anggraito®, Diletta Olliaro®, Andrea Marin®, Marco Ajmone Marsan®,
Benjamin Berg?, Isaac Grosof?

¢ University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
b Universita Ca’ Foscari Venezia, Venice, Italy
¢ IMDEA Networks Institute, Leganes, Spain
4 Northwestern University, Evanston, IL, USA

Abstract

Modern data center workloads are composed of multiserver jobs, computational jobs that require multiple
servers in order to run. A data center can run many multiserver jobs in parallel, as long as it has suf-
ficient resources to meet their individual demands. Multiserver jobs are generally stateful, meaning that
job preemptions incur significant overhead from saving and reloading the state associated with running
jobs. Hence, most systems try to avoid these costly job preemptions altogether. Given these constraints, a
scheduling policy must determine what set of jobs to run in parallel at each moment in time to minimize the
mean response time across a stream of arriving jobs. Unfortunately, simple non-preemptive policies such as
First-Come First-Served (FCFS) may leave many servers idle, resulting in high mean response times or even
system instability. Our goal is to design and analyze non-preemptive scheduling policies for multiserver jobs
that maintain high system utilization to achieve low mean response time.

One well-known non-preemptive scheduling policy, Most Servers First (MSF), prioritizes jobs with higher
server needs and is known for achieving high resource utilization. However, MSF causes extreme variability
in job waiting times, and can perform significantly worse than FCFS in practice. To address this issue, we
propose and analyze a class of scheduling policies called Most Servers First with Quickswap (MSFQ) that
performs well in a wide variety of cases. MSFQ reduces the variability of job waiting times by periodically
granting priority to other jobs in the system. We provide both stability results and an analysis of mean
response time under MSFQ to prove that our policy dramatically outperforms MSF in the case where jobs
either request one server or all the servers. In more complex cases, we evaluate MSFQ in simulation. We
show that, with some additional optimization, variants of the MSFQ policy can greatly outperform MSF
and FCFS on real-world multiserver job workloads.

1. Introduction

Modern data centers serve multiserver jobs that occupy multiple servers simultaneously [27, B9, L5, [L4].
Each multiserver job has an associated server need, the number of servers the job requires to run, and job
size, the amount of time the job must run to be completed. A set of multiserver jobs can run in parallel,
but only if the system has enough dedicated servers for each job. A data center scheduling policy must
select which jobs to run in parallel at every moment in time. Given a fixed number of servers, k, our goal
is to design a scheduling policy that minimizes the mean response time across jobs in a stream of arriving
multiserver jobs — the average time from when a job arrives to the system until it is completed.

There are two central difficulties in designing performant scheduling policies for multiserver jobs. First,
modern datacenter workloads generally exhibit large variability in both the server needs and sizes of their
jobs [B9]. As a result, it is usually impossible to utilize all available servers using the set of multiserver jobs
currently in the system. In general, leaving more servers unutilized on average will lead to higher mean
response time or even system instability. Unfortunately, maximizing the number of utilized servers at a
specific moment in time requires solving a knapsack problem instance. It is even more difficult, then, to
maximize the utilization of the available servers as jobs enter and exit the system over time.

Preprint submitted to Elsevier October 29, 2025

Second, modern multiserver jobs are generally stateful, meaning that job preemptions require persisting
and/or reloading a significant amount of program state [B4]. As a result, job preemptions or migrations can
take a prohibitively long amount of time to perform. Due to this overhead, data centers typically employ
non-preemptive scheduling policies that avoid costly preemptions altogether. Given these two constraints,
this paper designs and analyzes new, mon-preemptive scheduling policies that aim to minimize the mean
response time across a stream of multiserver jobs.

1.1. Prior Approaches

Much of the prior work on multiserver job scheduling uses frequent job preemptions to ensure that
resource utilization remains high as jobs enter and leave the system [12, 25, 21, 20]. These preemptive
policies are of limited utility when processing the stateful jobs that are common in data centers.

When it comes to non-preemptive policies, there are three central approaches suggested in the literature:
First-Come First-Served (FCFS) is a naive non-preemptive policy that serves jobs in arrival order until
the system runs out of available servers. For example, when a job with a large server need reaches the
front of the queue, the system may not have enough available servers to fit this job in service. FCFS
stops scheduling additional jobs at this point, even if other jobs in the queue could fit into service. This
phenomenon, known as Head-of-the-Line blocking, causes FCFS to underutilize servers, resulting in high
mean response time. Although FCFS is a simple policy, analyzing it has been proven difficult due to its
dependence on the random arrival order of jobs with different server needs. Only recently, [24] derived mean
response time bounds that confirm the empirical observation that FCFS performs poorly in practice.
Most Servers First (MSF) [Bg, 6, 21] is a non-preemptive policy that prioritizes jobs with larger server
needs. Specifically, whenever the system has available servers, jobs are considered in descending server need
order. Jobs that find their required number of servers are put in service successively. To understand both
the benefits and the pitfalls of MSF, consider an example where jobs either need one server or k servers. We
refer to this case as the one-or-all case for multiserver jobs. In this case, MSF serves jobs in two alternating
phases. First, MSF serves k-server jobs until none remain in the system. Then MSFE serves 1-server jobs
until none remain before returning to serve k-server jobs. We will show in Section EI that, by switching
between these two phases, MSF achieves optimal long-run average resource utilization in the one-or-all case.

While one might hope that MSF leverages its high resource utilization to achieve low mean response

time, we also find that MSF takes an increasingly long time to switch phases as the job arrival rate increases
(see Section b.3). This creates a feedback loop in the system whereby many 1-server jobs accumulate while
the system processes k-server jobs, leading to a long period of serving 1l-server jobs during which many
k-server jobs will accumulate. The two things to note about this process are that (i) despite its name, MSF
can spend long periods of time giving priority to 1-server jobs over k-server jobs and (ii) because the class
of jobs not in service accumulates quickly, there are almost always a large number of jobs in the system
under MSF. Figure [l| illustrates this problem via simulations that track the number of jobs in the system
under MSF for the one-or-all case. As MSF alternates between phases, jobs of the opposite class accumulate
quickly in the queue. While all jobs are eventually served, this behavior ensures that a significant fraction
of arriving jobs have long queueing times, leading to a high overall mean response time.
First-Fit is a variant of FCFS that avoids head-of-line blocking by continuing to examine jobs in arrival
order after finding a job that does not fit in service. One might hope that this policy gets a near-optimal
resource utilization without the harmful periodic behavior of MSF. Unfortunately, in the one-or-all case,
First-Fit has the same alternating behavior as MSF, but First-Fit spends even more time serving 1-server
jobs.

1.2. A New Approach: Most Servers First with Quickswap

Our central observation is that, while MSF achieves high resource utilization, it does a poor job on
switching which class of jobs are in service. Specifically, in the one-or-all case, MSF ties the decision to
switch from serving l-server jobs to serving k-server jobs to the time required to drain all 1-server jobs
from the system. This time, which is essentially a partial busy period in an M/M/k queue, explodes as the
arrival rate increases or as k becomes large [5], allowing many k-server jobs to accumulate in the system. To

2

reduce mean response time, our goal is to maintain the high utilization of MSF while shortening the time
the scheduling policy takes to switch between job classes.

With this motivation in mind, we propose a new class of policies called Most Servers First with Quickswap
(MSFQ), which is designed to improve the performance of MSF in the one-or-all case. Unlike MSF, which
tries to drain all 1-server jobs from the system before switching, MSFQ switches to serving k-server jobs
whenever the number of 1-server jobs in the system falls below a threshold, ¢. That is, when the number
of 1-server jobs falls below ¢, MSFQ stops admitting jobs into service and lets all running 1-server jobs
complete. MSFQ can then begin serving k-server jobs. By increasing ¢, we can shorten the time MSFQ
requires to switch phases, reducing the mean response time compared to MSF. Furthermore, we will prove
that MSFQ_maintains the high resource utilization achieved by MSF.

Figure [I| compares the number of jobs in the system under the MSF and MSFQ policies (the yellow
and blue curves, respectively). Setting a sufficiently high value of ¢ for MSFQ (¢ = k — 1 in this case)
greatly dampens the feedback that causes jobs to accumulate under MSF. As a result, an MSFQ policy can
achieve a much lower mean response time than MSF. We will also show that MSFQ policies are much better
at balancing the mean response time between different job classes. While our MSFQ policies are tailored
specifically to the one-or-all case, we will also explore generalizations of this policy to an arbitrary number
of job classes.

1.3. Contributions

Inspired by the high resource utilization of the MSF policy, this paper formally defines and analyzes the
class of MSFQ policies for scheduling multiserver jobs. Our analysis has two main goals. First, we aim to
prove stability results about MSFQ policies. We say the system is stable under a scheduling policy if the
policy achieves sufficiently high resource utilization such that the mean number of jobs in the system and
the mean response time across jobs are both finite. Second, we will analyze the mean response time under
MSFQ policies and their variants both in theory and in simulation to show the advantages of these policies
compared to prior approaches. Specifically, the contributions of this paper are as follows.

e First, in Section @, we formally explain the shortcomings of the MSF policy in the one-or-all case.
Here, we show how excessively long periods of serving 1-server jobs cause a feedback effect that leads
to poor mean response time.

e In Section we introduce the MSFQ policies, which uses the Quickswap mechanism to force the
policies to switch phases faster. Crucially, in Section we show that any MSFQ policy matches the
resource utilization of MSF by proving that MSFQ is throughput-optimal. Here, throughput-optimality
means that MSFQ will stabilize the system whenever the system can be stabilized.

e Then, in Section %, we analyze the mean response time under MSFQ by approximating the Laplace
Transform of the phase durations and number of jobs at the beginning of each phase. While the
MSFQ system resembles a polling system (See Section @), MSFQ cannot be analyzed using existing

20000 —— MSF —— MSFQ £800 — MSF —— MSFQ

@ 3

> >

= 15000 k= 600

12} w

Q Q

-2.10000 2400

o =

S) S]

g g

<2 5000 Q200

[g

=] =]

Z 0 Z 0

0 10000 20000 30000 40000 50000 60000 70000 0 10000 20000 30000 40000 50000 60000 70000
Simulation Time Simulation Time
(a) Number of light jobs vs time (b) Number of heavy jobs vs time

Figure 1: Number of jobs in the system under MSF and MSFQ where there are k=32 servers, 90% of the job arrivals are
1-server jobs, mean job sizes are 1 for 1-server jobs and k-server jobs, and jobs arrive at a rate of 7.5 jobs/second.

3

results from the polling literature. Hence, our response time analysis of MSFQ also represents a new
contribution to the extensive body of work on polling systems.

e Finally, Section [examines generalizations of MSFQ to real-world settings where jobs’ server needs
can vary widely. We evaluate two generalizations of MSFQ, called Static Quickswap and Adaptive
Quickswap, and evaluate these policies in simulation using traces from the Google Borg cluster sched-
uler [39]. Our simulations show that a well-designed Quickswap policy can improve mean response
time by orders of magnitude. Furthermore, Quickswap policies tend to achieve an equitable mean
response time between the job classes as compared to a less fair priority policy like MSF.

2. Related Work

We now describe prior work on multiserver jobs from the systems and theory communities in Sections @
and R.9, respectively. We also note that the Quickswap policies analyzed in this paper bear a resemblance
to prior queueing-theoretic work on polling systems. However, because the connection between multiserver
jobs and polling is somewhat indirect, we discuss the polling systems literature separately in Section R.3.

2.1. Systems for Multiserver Job Scheduling

Modern data centers schedule multiserver jobs across thousands of machines, supporting workloads with
diverse server needs and job sizes [29, B9, 41]. None of these schedulers make formal performance guarantees
about system stability or mean response time, generally relying on heuristics to make scheduling decisions.

SLURM [29] is an open-source cluster scheduler used in data centers and high-performance computing
environments. It uses a combination of heuristics and a variant of FCFS scheduling called BackFilling. While
this approach can improve resource utilization by running low-priority jobs opportunistically, it requires
accurate predictions of job sizes to work well, and can therefore suffer from low resource utilization in
practice. Borg [39], Google’s internal resource management system for data centers, schedules batch jobs
by placing incoming jobs in an FCFS queue. Once there is enough capacity to serve the next batch job,
complex heuristics are used to assign the job to a specific set of servers. YARN [41], integrated with Hadoop,
supports both FCFS and other heuristic policies aimed at optimizing fairness instead of stability or mean
response time. Hence, many systems designed to schedule multiserver jobs stand to benefit from improved
scheduling policies that are accompanied by formal performance guarantees.

2.2. Multiserver Job Scheduling in Theory

Prior work from the theory community on multiserver jobs has mostly focused on the stability and
response time analysis of FCFS. The stability region of FCFS was studied in [B7, B2, [l] in the case where
all job sizes follow the same exponential distribution. Subsequently, [23, B3] considered the case where
jobs belong to one of two job classes, deriving explicit expressions for the stability region of FCFS. For
many years, mean response time analysis of FCFS was restricted to systems with just two servers [[11, 16].
However, [24] recently derived explicit bounds on mean response time that are tight up to an additive
constant. Matrix geometric approaches [3, 4] have also recently been used to characterize the performance
of FCFS systems with two job classes under specific service time distributions. While FCFS is becoming
well-understood, all of these analyses confirm that it can perform poorly in terms of both stability and mean
response time.

There is comparatively little work on more complex and efficient policies that do not require job pre-
emptions. For example, the well-studied MaxWeight policy is throughput optimal, but requires preemption
and is computationally costly to implement in practice [31]. Other recent work on scheduling multiserver
jobs has also been restricted to the case of preemptible jobs [22, 25]. There are two prominent examples
of throughput-optimal, non-preemptive policies for scheduling multiserver jobs. First, Randomized Timers
is a throughput-optimal policy based on MaxWeight that is non-preemptive [35]. Unfortunately, there is
no known mean response time analysis of Randomized Timers, and the policy has been shown to perform
poorly in practice. Second, [13] recently analyzed a new class of non-preemptive policies called Markovian
Service Rate (MSR) policies. An MSR policy precomputes a set of schedules with high resource utilization,

4

and switches between schedules according to a continuous-time Markov chain that is independent of the
system state (i.e., queue lengths). The class of MSR policies is throughput-optimal and admits an analysis
of mean response time. However, because MSR policies do not consider queue length when switching sched-
ules, they waste capacity unnecessarily, resulting in high mean response time. We will show that MSFQ can
significantly outperform MSR, policies by considering queue length when switching schedules.

2.8. Polling Systems and Most Servers First

In the one-or-all setting, the MSF and MSFQ policies we study (see Sections @ and @) are theoretically
similar to a two-station polling system with exhaustive service, where the first station serves k-server jobs,
and the second serves 1-server jobs. Furthermore, the system incurs something like a switchover time when
moving from 1-server jobs to k-server jobs.

The literature on polling systems is vast [[j]. The single-polling-station and infinite-polling-station sys-
tems are well-understood [g, [18], and approximations for waiting time in the multiple-polling-station system
have been established [9]. Stability issues caused by switchover times have also been studied [19, 17]. How-
ever, our multiserver job system considers a mix of single-server and multiserver operations not found in the
polling literature. Furthermore, while MSF essentially uses an exhaustive service discipline for switching
phases, the class of MSFQ policies uses a more generalized, threshold-based version of exhaustive service
that is not analyzed in the prior work. Hence, the analysis of MSFQ in this paper also serves as a new
contribution to the literature on polling systems.

3. Model

3.1. Multiserver Jobs

We consider a system with k servers. A multiserver job can be represented by an ordered pair (i, s),
where i € {1,2,--- ,k} is the number of servers the job needs in order to run and s is the service duration
(also known as job size), the time the job must run on the servers before completion. Jobs occupy a fixed
number of servers throughout their time in service, and cannot be preempted: once started, a job must be
run until it is complete. We refer to this job model as the Multiserver Job (MSJ) model.

The MSJ model reflects the realities of scheduling in modern large-scale compute clusters. Specifically,
running jobs typically cannot be preempted because they are stateful and preemption would destroy this
working state [34]. Additionally, the MSJ model does not aim to capture straggler effects where a job’s tasks
on some servers finish earlier than others. While the straggler effect is captured by more detailed models such
as fork-join queueing models [36], these models are notoriously intractable to analyze. Furthermore, modern
systems employ a variety of techniques to mitigate the straggler effects [2]. As a result, real-world systems
such as Google Borg make scheduling decisions based on fixed server needs and largely ignore straggler
effects within a job.

We consider workloads composed of different job classes, where class-i jobs all need i servers. We consider
serving a stream of multiserver jobs, where class-¢ jobs arrive according to an independent Poisson process
with rate ;. We further assume the service durations of class-i jobs are i.i.d. exponentially distributed
random variables such that S; ~ exp(u;) for any class i.

We define an arrival rate vector X = (A1, Aa, - -+ , A\r) and a completion rate vector p = (1, flo, -+ , fig)-
Let A denote the total arrival rate of multiserver jobs into the system. Hence, A = ||Al|;. Let p; be the
fraction of arriving jobs belonging to class i. Equivalently, p; = A;/\.

We define a feasible schedule as a multiset of classes of multiserver jobs that can run in parallel, obeying
the rule that the total number of servers requested does not exceed k. We use u = (uq,us, - ,uy) to denote

a feasible schedule in the multiserver system, where it puts u; class-i jobs in service and Z].C_l tu; <k, as
the total server demand cannot exceed k. -

In the one-or-all setting, A; = 0 for all 1 < i < k because jobs can only request one server or all servers
in the system. In this case, A = A\; + ;. A feasible schedule in this case can either be ux = 1 and u; = 0
for i <k, or u; <k and u; =0 for ¢ > 1.

A scheduling policy u(t) = (u1(¢), ua(t), -+ ,ur(t)) picks a feasible schedule at every time ¢, subject to
the requirement that no job is preempted: the service policy at time ¢ must contain all jobs whose service
has started but not completed by time t. We allow the scheduling policy to select a u;(t) value that exceeds
the number of class-i jobs available for some job class . In general, a scheduling policy may depend on the
system state as well as policy-specific state.

We model the system state with a pair of vectors: The total occupancy vector n(t), where n;(t) is the
number of class-i jobs in the system at time ¢, and the service vector u(t), chosen by the scheduling policy
and discussed above. In addition, we allow a general policy-specific Markovian state z. The triple (n,u, 2)
represents the system state and forms a countably infinite Markov chain.

For notational convenience, in the one-or-all setting, we neglect all the 0’s in the vectors and abbreviate
n(t) as n(t) = (n1(t),nk(t)) and u(t) as (u1(t),ur(t)). Thus, we can represent the system state with a
5-tuple (n1, ng, u1, ug, 2).

3.2. Stability Region

For a given policy p, the mean response time of the system may or may not be bounded. Equivalently,
the system may or may not be positive recurrent. Considering the system where job size distributions and
job classes are fixed and we vary the arrival rates, we define the set of arrival rates such that the mean
response time is finite under policy p as the policy stability region C,. Formally, C, = {A | E[T,(A)] < oo},
where T, () is the response time of multiserver jobs under policy p when the arrival rate vector is A. We also
define the system stability region C as the set of arrival rates such that there exists a policy that stabilizes
the system. Therefore, the system stability region is the union of the stability regions of all possible policies.
When C, = C for some policy p, we say that the policy p is throughput-optimal. In other words, a policy p
is throughput-optimal if it stabilizes the system whenever there exists a stable policy.

3.8. General Notation
We define the notation (X, Y') as the independent sum of X copies of the random variable Y: 3(X,Y) :=

X
E - Y;, where X > 0 is an integer-valued random variable and the Y;’s are i.i.d samples of Y. We define
i=

the notation ()" as the positive part of x. Specifically, (z)* := max(z,0). We define the notation X (z) as
the z-transform of the probability mass function of an integer-valued random variable X and Y (s) as the
Laplace-Stieltjes transform of the probability density function of a continuous random variable Y.

4. Policies

In this section, we define the policies we are using in the paper. We first define the Most Servers First
(MSF) policy [6, B1], which is known to have shortcomings as discussed in Section [l. Then, based on the
MSF policy, we develop the MSF Quickswap (MSFQ) policies for the setting where there are only class-1
and class-k jobs in the system. We analyze the mean response time of an MSFQ policy in Section and
show response time performance improvements with analysis and simulations in Section f§. Inspired by the
improvements obtained with the MSFQ policies, we develop the Static Quickswap policy and the Adaptive
Quickswap policy, each of which is a generalization of MSFQ to support arbitrary sets of job classes. We
show that the mean response time performance of Static Quickswap and Adaptive Quickswap each compares
favorably to MSF in simulations based on real datacenter traces in Section é

4.1. Most Servers First

We analyze the Most Servers First (MSF) policy as described in [6, Bl]. Specifically, we define MSF
as a non-preemptive policy that favors jobs with the highest server demands. Whenever a job arrives or
completes, MSF tries to put as many additional jobs as possible into service, starting with the job that
demands the most servers and moving in descending order of server demands. This process ends when
either all servers are utilized or MSF has considered all jobs in the queue.

In the one-or-all case where jobs either require 1 server or k servers, MSF has a somewhat simpler
structure. At any moment in time, the policy either serves 1 class-k job or up to k class-1 jobs. The two
job classes are never served simultaneously. We describe this structure by saying that MSF undergoes two
phases. In phase 1, MSF serves exclusively class-k jobs one at a time. Doing so, MSF uses all servers in
the system and is thus very efficient. In phase 2, MSF serves exclusively class-1 jobs. During phase 2, there
can be up to k class-1 jobs in service, depending on how many class-1 jobs are in the system. Whenever the
number of class-1 jobs in service is less than k, some of the servers’ service capacity is wasted. MSF only
switches between phases when it runs out of jobs of the current class.

Considering the phases of MSF in the two-class case demonstrates why this policy can lead to poor
performance, particularly as load becomes high. The time to complete phase 1 looks like the busy period
of an M/M/1 system started by the jobs that arrived in the prior phase 2. The time to complete phase 2
looks like the busy period of an M/M/k system started by the jobs that arrived during the prior phase 1.
As load increases, both phases will become longer, causing more class-1 jobs to arrive during phase 1 and
vice versa. In this way, MSF amplifies the effect of increased load on mean response time.

4.2. Most Servers First Quickswap (MSFQ)

To reduce the load-amplifying effect found in MSF, we introduce the Most Server First Quickswap
(MSFQ) policies in the one-or-all setting. The goal of MSFQ is to shorten the duration of phase 2 of the
MSF policy so that fewer class-k jobs are allowed to build up during this phase. Specifically, an MSFQ
policy is associated with a threshold, ¢, that is used to shorten the periods where class-1 jobs are in service.
When the number of class-1 jobs drops below ¢, the system stops allowing class-1 arrivals to enter service.

We define the MSFQ policy formally via the following phases with a threshold ¢ € [0, k — 1]:

o Phase 1: Serve class-k jobs exclusively until none remain (n; = 0).

o Phase 2: Serve class-1 jobs until there are less than k class-1 jobs in the system (n; < k).

o Phase 3: Serve class-1 jobs until there are at most ¢ class-1 jobs in service (ny < /).

o Phase 4: Complete the class-1 jobs that are already in service (ny = 0 at the end of the phase). New
class-1 arrivals are not allowed to enter service during this phase.

At the end of phase 4, the server returns to phase 1. Note that phase 2 and phase 3 are similar, but it will
be convenient to treat them separately in our analysis.

By analyzing response time of the MSFQ system in Section @, we find that the mean response time is
dependent on the number of jobs in the system at the beginning of the phase, and the phase duration —
the amount of time from when the system enters phase ¢ until phase ¢ completes. We let random variable
N} denote the number of light (class-1) jobs and Nj denote the number of heavy (class-k) jobs at the
beginning of phase i. We also let the random variable H; denote the duration of the ith phase.

Note that, when ¢ = 0, our MSFQ policy is the same as the MSF policy. We show that the class
of MSFQ policies, irrespective of the threshold /¢, is throughput optimal in Section . The intuition
behind throughput-optimality follows from the fact that we always fully utilize all the servers outside of the
switchover period (phases 3 and 4) when there are enough jobs waiting in the system. By searching over
the choices of £, we show that our MSFQ policy offers significant performance improvement over MSF. This
confirms that the load-amplifying effect found in MSF has a huge impact on response time performance.

4.8. Static Quickswap

Our one-or-all MSFQ analysis relies heavily on the fact that there are only two classes of jobs in the
system. The key difficulty in generalizing the MSF(Q policies to arbitrary sets of job classes lies in selecting
the next job to serve, once the phase corresponding to the current class of jobs is complete.

We therefore define the Static Quickswap scheduling policy, which cycles through all classes of jobs in a
fixed order, with the following two phases for each class of jobs, i:

e Working Phase: In class i’s working phase, we serve class-i jobs exclusively until the number of idle
servers exceeds k — ¢. Formally, in class i’s working phase we set u; = |k/i], and we set u; = 0 for all

J# i

e Draining Phase: During class ¢’s draining phase, we complete the class-i jobs that are still in service at
the end of the working phase. New class-i arrivals are not allowed to enter service during this phase.

When a given class’s draining phase is complete, the next class in the cycle is served. We do not focus on
the choice of cyclic ordering of the phases — we leave studying the effects of that ordering to future work.
In Remark [l, we give a proof sketch that the Static Quickswap policy achieves optimal stability region
whenever all classes of jobs perfectly divide k, and thus fully utilize the k servers.
We will empirically show that the response time performance of Static Quickswap compares favorably
to MSF in Section f.

4.4. Adaptive Quickswap

Inspired by MSFQ and Static Quickswap, we develop a policy called Adaptive Quickswap, which allows
multiple classes of jobs at the same time. In the general setting, if the number of servers required by a class
does not perfectly divide the total number of servers, the system cannot fully utilize the server when serving
some class of jobs exclusively. Hence, our Adaptive Quickswap policy prioritizes jobs to serve in MSF order
and switches when it finds that serving these jobs becomes inefficient. The Adaptive Quickswap policy first
admits jobs according to MSF order and then operates according to the following phases:

o Working Phase: Whenever servers become available, the job in the queue with the largest server need
that is at most the number of unoccupied servers is admitted to service. This continues until the
quickswap is triggered.

e Quickswap trigger: Switch from the working phase to the draining phase when there is a job class that
is in the queue and not in service, and every job class in service has no jobs of that class waiting to
receive service.

e Draining Phase: No jobs may enter service, except for the job in the queue with the largest server
need. Once this job has entered service, switch to the working phase.

5. Analysis of the MSFQ Policy

In this section, we analyze the Most Servers First Quickswap (MSFQ) policies under the one-or-all
setting, where there are only class-1 and class-k jobs. We call the class-1 jobs light jobs and the class-k jobs
heavy jobs. We begin by proving that any MSFQ policy is throughput-optimal in the simplified setting.

Theorem 1 (MSFQ Throughput-Optimality). In the one-or-all MSJ system, Most Servers First with
Quickswap (MSFQ) policies have optimal stability region for all thresholds £, 0 < £ < k.

We then analyze the mean response time under MSFQ. We observe that the mean response time depends
on two central factors: the amount of time the policy spends in each phase, and how many jobs are in the
system at the beginning of each phase. We therefore approximate the Laplace-Stieltjes transforms of the
distributions of phase durations and the z-transforms of the number of jobs distributions at the beginning
of each phase. We then show how to use these transforms to approximate the mean response time for light
and heavy jobs. These three steps give the following summary theorem regarding E[T].

Theorem 2 (MSFQ Summary Theorem). The mean response time under MSFQ, E[T], depends on the
first and second moments of H; and N; for all phases i. Hence, one can compute E[T] using the transforms

NE(2) and]T]Z?I(Z) for all i using Lemmas H—.

All of our analysis applies to the original MSF policy, by setting the Quickswap parameter ¢ to 0.

5.1. Throughput-optimality of MSFQ
We now prove that MSFQ policies achieve optimal stability region, for any Quickswap threshold param-
eter {. We start by lower-bounding its stability region:

Theorem 3. In the one-or-all MSJ system, the Most Servers First with Quickswap policies are positive

A A
recurrent for all thresholds £, 0 < ¢ < k, whenever SRS
kpi g

Proof. We prove this theorem via the Foster-Lyapunov theorem with a carefully designed Lyapunov function.
See for a full proof. O

We now upper bound the optimal possible stability region in the one-or-all system:
Theorem 4. In the one-or-all MSJ system, no scheduling policy is stable if \1/kp1 + M\p/pr > 1,

Proof. Define a job’s work as the product of server need and mean service duration, scaled down by k. The
system can never complete work at rate above 1, because there are k servers. Work arrives to the one-or-all
system at a rate of Ay /kpu; + A\r/ug. If this rate is 1 or more, the system cannot be stable. This argument
can be further formalized by comparing with a resource-pooled M/G/1. O

The throughput-optimality of the MSFQ policy now follows by combining Theorems E and @:

Theorem 1 (MSFQ Throughput-Optimality). In the one-or-all MSJ system, Most Servers First with
Quickswap (MSFQ) policies have optimal stability region for all thresholds £, 0 < ¢ < k.

Remark 1. Using similar arguments to Theorems B and , we can also bound the stability region of the
Static Quickswap policy with arbitrary job classes. The main difference in this case is that the number of
servers required by class-j jobs may mot perfectly divide the total number of servers, k, leading to wasted
capacity. Hence, in this general case, the sufficient condition for stability becomes Z W < 1, where
IR/ 1M
the floor function accounts for the wasted capacity when serving class-j jobs. The necessary condition for
s
stability from Theorem |} remains unchanged: Z ﬁ < 1. Hence, unless j divides k for all classes,
J JIHj
the Static Quickswap policy is not throughput-optimal in this general case.

5.2. Approximations in Response Time Analysis

To make the MSFQ system more tractable to response time analysis, we assume in Sections @ and @
that there is at least 1 heavy job in the system at the beginning of phase 1, and at least k light jobs in the
system at the beginning of phase 2. This approximation ensures that all the phases are not skipped in a cycle,
thus making the system easier to analyze despite being highly accurate as shown in Section f. Intuitively,
when the system load gets high, there would be at least 1 heavy job in the system at the beginning of phase
1 and at least k light jobs in the system at the beginning of phase 2 with high probability.

5.3. Response time analysis

Given that the MSFQ policies are throughput-optimal, we would like to analyze the mean response time
of a stable MSFQ system. To analyze E[T], we analyze the conditional response time of a light job or a
heavy job given the phase in which it arrives.

Specifically, in Lemma P we will analyze the conditional mean response time, E[T¥], of a heavy job that
arrives in phase 1, and in Lemma B the conditional mean response time, E[TQ{{B’ 4], of a heavy job that arrives
in any of phases 2, 3, or 4. Similarly, we analyze the conditional mean response times IF?,[TlLA],]E[TQL]7 and
]E[T3L] of light jobs that arrive in either phases 1 or 4, phase 2, and phase 3, respectively. We also analyze
my;, the fraction of time the system spends in phase 1.

We then characterize the mean response time under MSFQ, E[T], as follows:

_ M A

E[T] =~ (BT Im1 + E[T3% 4](ma + ms + ma)) + = (E[TF](m1 + my) + E[Ty Jms + E[T¥]ms) . (1)

A
9

Our analysis of E[T] has three steps. First, in Lemma m, we show_that each m; can be computed as a
function of E[H;], the mean duration of phase i. Second, in Lemmas [to {, we derive explicit expressions
for the conditional mean response times listed above, and show that these expressions depend on just the
first and second moments of H; and N; for all i. Hence, to compute E[T] it suffices to find the transforms,
NE(z), NH(z), and E(s) for all . Third, we compute the necessary transforms in Section @

We begin by showing in Lemma [l that the fraction of time m; that the system spends in state i is
proportional to the phase length E[H;].

E[H;]
iy B[H;]

Proof. Follows directly from Palm inversion [30]. O

Lemma 1. The fraction of time the MSFQ system spends in phase i is m; =

Next, we will show that the conditional mean response times in (m) depend only on the first and second
moments of H; and N; for each phase. We handle E[T{] and E[TY] in Lemma P, E[T21f3)4] and E[TlLA] in
Lemma B, and E[T¥] in Lemma H

To analyze E[T] and E[T{], we relate these terms to an M/G/1 with Exceptional First Service (EFS)
system [10] as defined in Remark P.

Remark 2 (EFS system). As stated in [10], an M/G/1 with Exceptional First Service (EFS) system serves
two different classes of jobs. Normally, job sizes are drawn i.i.d. according to some job size distribution S.
However, the first job in each busy period experiences exceptional first service, and has a job size distributed
as S'. Let E]WEFS (X S, 8")] be the mean work in an EFS system with arrival rate \. From [10], we have

AE(S?] n A(E[S"] - E[S?])
21— AE[S]) © 2(1 — AE[S] + AE[S])

E[WEFES(\, 8, 8] =

Let pEFS()\, S, S") be the probability that a job arrives to an empty system and experiences exceptional service.
We have that

1o E[S]
PSS = T BT

Lemma 2. The mean response time of heavy jobs arriving into phase 1, E[TlH], and the mean response
time of light jobs arriving into phase 2, E[TQL}, can be characterized as follows:

_ EWEFS (O, Sk, (N, Sk))) L
1= pPES (O, Sk, (NTLSk)) e
_ E[WEFS(A\, 81 /k, Y (Ny — k+1,51/k))] 1
1 =pPFS(A\, S /R, Y (NE —k+1,59/k)

E[T{"]

E[Ty]

b'e
where X(X,Y) is defined as 2'71 Y;. These expressions only depend on the first and second moments of
S1, Sk, NlH, and NQL.

Proof. We compare a tagged heavy job that arrives into phase 1 with a job in the EFS system to compute
its response time. Specifically, we compare the mean work in the system a tagged heavy job sees on arrival
during phase 1 to the mean work a tagged job that does not receive exceptional first service sees.

Consider the case where jobs arrive into an EFS system with rate Ag, job sizes are i.i.d. exponentially
distributed according to Sj except for the jobs that receive exceptional first service, whose job sizes are
sampled i.i.d from (N Sy). In our MSFQ system, the first job that arrives in phase 1 needs to wait for
NlH heavy jobs to complete. In the EFS system, the second job in a busy period also needs to wait for NlH
heavy jobs’ work to complete. The subsequent jobs in the busy period also see the same work in the queue

10

as the subsequent jobs in phase 1 in our MSFQ system. In other words, a tagged job that arrives into the
MSFQ system during phase 1 sees the same mean work compared to a job that does not receive exceptional
service in the EFS system we consider. Hence, we can use the results in Remark P as if the exceptional job
size distribution is S" ~ X(N{, Exp(uy)) and the non-exceptional distribution is S ~ Exp(uz). Then,

1
E[T}] = E[mean work a tagged job sees] + m

1 E[WEES (g, Sk, B(N{L, Sp))] 1
EWEFS (., Sk, (NI, S,) | no exceptional service)] + — = k) 1 il
[(ks Sky 2(NTT, S) | P)] = T P (O 5. SN 50 n

(2)

The proof for E[T: 2L | follows a similar argument. We compare a tagged light job that arrives during phase
2 and an EFS system with an arrival rate \;, exceptional job size distribution S ~ S(Ny — k + 1,8, /k),
and non-exceptional distribution S ~ S;/k. Then,

E[WEFS(\1, S1/k, S(NE — k41,5 /k))] 1

E[TF] = -
[T5] 1= pFFS (A, 51k S(NE —k+ 1,5 k) | 1)

Based on Remark E and (E), we can see that our E[T{] formula depends on the first and second moments
of Sy and X(N{ Sy). Tt is easy to see that the first and second moments of Sy, is E[Sy] = 1/us and
E[S?] = 2/u3. We can compute E[X(N{?, ;)] = E[N{]/ux because N{ is independent from the job sizes.
Lastly, to compute E[X(N{?, S;.)?], we have

E[S(NH, Sp)? ZE (i, %)) P{NF = }_Z”Z P{NH _Z}_E[(N{I)22+E[Nﬂ'
i=0 k k

Similarly, it suffices to compute first and second moments of S;/k and (N4 — k + 1,51 /k) to compute
E[TF]. Tt is easy to see that E[S;/k] = 1/(kui) and E[(S1/k)?] = 2/(ku1)?. Likewise, we can compute
E[X(Nf — k41,81 /k)] = (B[NL] — k +1)/(kps). Lastly, to compute E[X(NS — k + 1,51 /k)?], we have
E[(NF)?] — (2k — 3)E[NF] + k? — 3k + 2

k23

E[X(Ny —k+1,51/k)*] =

Therefore, we have shown that it suffices to compute the first and second moments of N7 and NI to
compute E[T] and E[T]. O

We now analyze the mean response time over all heavy jobs that arrive in any of phases 2, 3, or 4, and
the mean response time over all light jobs that arrive in either phases 1 or 4.

Lemma 3. The mean response time IE[TQ%A] of heavy jobs which arrive during phases 2, 3, or 4, and the
mean response time E[TlLA] of light jobs which arrive during phases 1 or 4, are given by:
(Me/pe + DE[(Hy + H3 + Hy)?) | 1 L

E[T2H3 4} = E[Tl 4] =

" A1/ (k) + DE[(Hy + H1)?] " 1
"~ 2E[H; + Hs + Hy] fr ’

2E[H4 +H1] Ml'

Proof. Consider a tagged heavy job that arrives into the system in any of phases 2, 3, or 4. On arrival, this
tagged job sees all the heavy job arrivals between the start of the most recent phase 2 and the current time
in the system. Hence, the tagged job needs to wait until these jobs are completed in the upcoming phase
1 before it can begin receiving service. Let Hf be the age of the Hy + H3 + H, period, the elapsed time
from the beginning of phase 2 an arrival during this period sees, and H, eH be the excess of the Ho + Hs + Hy
period, the time until the end of phase 4 an arrival during this period sees. On average, the tagged heavy
job sees A\ E[H, f | heavy jobs in the system at the time it arrives into the system. Hence, the mean work

A
the heavy job sees is —kE[Hf]
M

11

The response time of this tagged heavy job is composed of 3 elements: the time before any heavy job
receives service, the mean work the tagged job sees in the system, and the time to serve itself. Hence,

E[TY,] = E[HY] + %E[Hf] +E[Si). (4)

Combining the Palm inversion [30], standard results on ages and excess [26], and (H), we have:

E[(H, + Hs + Hy)?] EE[(H2+H3+H4)2] 1
2E[Hs + H3 + Ha| py 2E[H> + H3 + Ha] puy,
(Ak/ﬂk + I)E[(HQ + Hs + H4)2] i

2E[H; + Hs + Hy) .

E[T2H,3,4] =

Similarly, consider a tagged job that arrives into the system in either phase 4 or phase 1. On arrival,
this tagged job sees all of the light job arrivals between the start of the most recent phase 4 and the current
moment. let H (f and H, f be the age and excess of this Hy + H; period. The tagged light job that arrives

during phase 4 or phase 1 also needs to wait for an excess and k—lE[H aL] of work before receiving service.
H1
Its response time is composed of the excess duration, the mean work it sees on arrival, and the time it takes

to complete:
E[(Hy + H1)?] A1 E[(Hy + Hp)?) 1

E[TE,) = B[HY + ~-E[HY] + E[S)] =

kpa 2E[Hy + Hi] ' kpi 2E[Hs + Hi| '
_ (A1/(kpa) + DE[(Hs + Hi)?| L 0
2E[Hy + Hi] p1

Therefore, we have shown that it suffices to compute the first and second moments of H; in order to
compute E[Ty%] and E[T},].
We finish by analyzing the mean response E[T?)L] of light jobs that arrive during phase 3.

Lemma 4. The mean response time E[TP,L] of light jobs that arrive during phase 3 is given by:

Eoo C; E+(j—k+1)T
L1 j=£+1 X\1+min(k,j)p1 kua
E[TS] - Zoo C;)
Jj=£+1 X\i+min(k,j)p1

where C; is defined recursively as follows, for each positive integer j:

AL+ (4D)
A P+ 1<k—1 =0+1
+ g 1+ JHL .
c.=0,_,— 11T + 2 H{j<k—-1} (4+1<j<k.
! i (O + (G- D) jpa b= ! -
1 .

Proof. Consider the stochastic process {ni(t)} during phase 3. By the definition of MSFQ, n; = k — 1 at
the beginning of phase 3 and ny = ¢ at the end of phase 3. The process {n;(¢)} forms an absorbing Markov
chain corresponding to an M /M /k system with arrival rate A1, and job size distribution S;. In order to
characterize the mean response time of a light job that arrives in phase 3, we condition the arrival based on
the state it sees in {n;(t)}. Therefore, it suffices to compute C;, the number of visits to state j in {n(t)},
to characterize the probability a light job arrives in state j.

We first consider the case where there are at least k + 1 light jobs in the system. When j > k + 1, an
arrival from state j — 1 or j will accrue one visit to state j,

A A A
! + Cj ! = j_lil.
A1+ kg A1+ kg K
12

Cj = Cj_l

A
Therefore, for all j > £+ 1, we have C; = k—lC’k. When ¢+ 2 < j <k, an arrival from state j — 1 or j will
H1

accrue one visit to state j with different rates:

At At

Lo At(A1+) AL+
M+G-Dm T M+im

. : + = 1{j <k—1}.
YO+ (- D) Ji { }

Cj:ijl +]1{j§k—1}:C’j,

Finally, we handle Cy;; separately:

A

1)\1 +(€+1),U,1
A+ (04 1D

FUEH LS k1) = S

Co1 = Copr 1{+1<k—1}.

To compute E[T?,L], note that the response time of a light job that arrives during phase 3 depends only

on the number of light jobs n(¢) when the light job arrives. A light job that sees j jobs on arrival has

E+(G—k+1)7
ki

on arrival. By PASTA, this is simply the time-average distribution of the number of jobs seen during phase

3, which is given by the pre-absorption average of C;. Specifically,

expected response time . As a result, we can compute F [T3L] by conditioning on n;(t) seen

37241 Eftotal time spent in state j] - E[Ty" | the job arrives during state j]

E[T3] = S . . :
> j—e+1 Eftotal time spent in state j]
Zoo C, k+(—k+1)"
Jj=£+1 \i+min(k,j)p1 ket

- C; . O

Zoo
j=£+1 X1 +min(k,j)p1

We have shown that to compute the E[T;] terms and the m; terms in (E) for each phase i, it suffices to
compute the first and second moments of H; and N;. To compute the first and second moments, it suffices
in turn to compute the transforms of H; and N; for all . We tackle these transforms in the following section.

5.4. Phase Duration Analysis

In this section, we compute the required transforms of H; and N; for all phases i in order to compute
their first and second moments. Taken together with Lemmas [I|-{, this completes the proof of Theorem .

In our analysis, it will be useful to refer to busy periods of the system when serving either light or heavy
jobs. We define these busy periods as follows.

Remark 3 (Busy Periods). We consider a busy period started by a random amount of work W to be the
time required for an M/G/1 system to empty when starting with W work in the system. We let BVI{, be the
duration of this busy period in an M/G/1 where only heavy jobs arrive, with arrival rate \. Similarly, let
B%V be the duration of this busy period in_an M/G/1 where only light jobs arrive, with arrival rate Ay. Using
standard queueing-theoretic techniques [20], we have

BIL(s) = W(s+ A — \BE (5)), BE(s) = W(s+ A1 — M BE (s)).

To begin, we observe that the duration of phase 1 is equal to a busy period started by the number of
heavy jobs that arrive during the preceding phases 2-4. Similarly, the duration of phase 2 is a busy period
started by the number of light jobs that arrive during the preceding phases 4 and 1. This insight allows us

to analyze E(s) and 1?2(5) in Lemma f.

Lemma 5. The transforms of the distributions of phase 1 and phase 2 durations are given by:

Hi(s) = Nf(BE (), Hy(s) = NE(BE, (s))(BE (s)'*.

13

Proof. At the beginning of phase 1, the system has E(NlH ,Sk) amount of work in terms of heavy jobs. At
the end of phase 1, the system empties all the heavy jobs in the system. Therefore, the length of phase 1
can be seen as a busy period for heavy jobs started by L(N{I, S}) amount of work.

Hi(s) = B a6, (5) = NI (Sk(s + M — MBI (5)) = NI (BE,(s))

Here, we use the fact that (X, Y)(s) = 5(:(37(8)) where X is either independent of Y or is a stopping time
relative to the sequence of durations Y [26].

Similarly, the system has N2L light jobs at the beginning of phase 2 and will have k — 1 light jobs at the
end of phase 2. In this case, the system finishes NZ — k + 1 jobs over the course of phase 2. Therefore, the
length of phase 2 can be seen as a busy period for light jobs started by Z(NQL — k41, Sk) amount of work.

Hy() = BYns_gy1.5,)(8) = N§ = b+ 1(B§, (s)) = N3 (BE, ())(BE, ()" . O
Next, we compute the z-transforms of the number of jobs in the system at the start of each phase. We

note that our response time analysis depends only on the moments of NI and NZ, hence it suffices to

compute z-transforms N{7(z) and NF(z). We show how these transforms depend on the Laplace transforms
of the phase durations in Lemma f.

Lemma 6. The z-transforms of the distributions of the number of heavy jobs at the beginning of phase 1
and the number of light jobs at the beginning of phase 2 are given by:

—

NP (2) = Hy((1 — 2)) Hs(Me(1 —) Hy (1 — 2)
NE(2) = Ho(Ow(1 = B(2) Ha(e(1 = B(=) HaOwe(1 = B(2)) + M (1 — 2)),
where 8(z) = BE (M (1 - 2)).

Proof. The number of heavy jobs at the beginning of phase 1 can be seen as the number of arrivals accrued
during a Hy + H3 + H, time period because the heavy jobs are emptied at the end of phase 1. Formally, we
have N{T ~ AEQ +Hs+H,> Where A% denotes the number of heavy job arrivals in X seconds.

Similarly, the number of light jobs at the beginning of phase 2 can be seen as the number of arrivals
accrued during phase 4 and phase 1. However, note that phases 4 and 1 are not independent, as they are
positively correlated. Intuitively, a longer phase 4 will result in a longer phase 1 because of more heavy jobs
arriving into the system. In this case, we use Hy 1 to denote the length of the joint phase 4 and phase 1
period. As a result, we have N2L ~ AILLI4_1. Note that, if we are only interested in the mean of this joint
period, E[Hy 1] = E[H4] + E[H;] due to the linearity of expectations.

Next, we use the standard transform formulas for Poisson arrivals during a random interval: A (z) =
X(M(1=2)), AL (2) = X (A1 (1 — 2)) [26]. Plugging into N, we have

N (z) = AR oo, (2) = Ho+ Hs + Hi(\(1 — 2)) = Ho(A(1 — 2)) Hs(Ar(1 — 2)) Ha(Ae (1 — 2)).

Plugging into NI, we have

o —

Nf(2) = Af, (2) = Hia(a(1 - 2) = / iy Ou(l - 2) | Hy = 2)P{H, = o}de
N / TNF(B(e) | Hy = w)e MO PH, = o}ds
0

= Ha(Me(1 — B(2)))Hs(Ae(1 — B(2))Ha(Ae(1 = B(2)) + Mi(1 = 2)). O

Compared to Hy and Hs, the durations Hs and H,4 are relatively straightforward to analyze. Specifically,
the length of phases 3 and 4 depends only on the definition of the number of servers, k, arﬁ MSFQ thEshold,
£. These phases are independent of the lengths of other prior phases. We compute Hs(s) and Hy(s) in
Lemma [and Lemma g, deferring the proofs to |Appendix

14

— k-1 ——
Lemma 7. The Laplace transform of the duration of phase 3 is given by: Hs(s) = H i Hj ;(s), where
=

Hs j is the transit time from j light jobs in the system to j — 1 light jobs in the system, with transform:
- JH j<k
Hj j(s) = At +jpn +s— M Hz j11(s) (5)
B~I§1 (s) ji=k.

¢ Jm
J=1 jui + s

Lemma 8. The Laplace transform of the duration of phase 4 is given by: f[l(s) = H

Given Lemmas B—E, we are now ready to prove the summary theorem, Theorem E

Theorem 2 (MSFQ Summary Theorem). The mean response time under MSFQ, E[T], depends on the
first and second moments of H; and N; for all phases i. Hence, one can compute E[T] using the transforms

NE(2) and Kf?(z) for all i using Lemmas B-.

Proof of Theorem @ Theorem E follows from Lemmas B—B These lemmas provide recursively-defined trans-
forms that can be differentiated to obtain E[T]. For convanience, we provide a calculator that performs

these computations and returns the desired approximation
O

6. Simulation Results

In Section B, we derived an approximation of the mean response time under an MSFQ policy in the one-
or-all case. This raises two important questions. First, how does MSFQ compare to other non-preemptive
scheduling policies in the one-or-all case? And second, how do these results generalize to workloads with
additional classes of jobs? To address these questions, we now evaluate MSF(Q and several policies from the
literature, comparing the mean response time predicted by our theoretical results to simulations of various
other policies. Specifically, we compare MSF against the First-Fit BackFilling policy [21], and against the
nonpreemptive Markovian Service Rate policy (nMSR) [13]. We will show that our approximations from
Section f are highly accurate, and that MSFQ significantly outperforms all competitor policies.

We begin by simulating policies in the one-or-all case in Section to show that our response time
analysis is accurate and that MSFQ is by far the best of the non-preemptive scheduling policies. We then
study two natural generalizations of MSFQ to workloads with more than two job classes. We show that
these generalizations, Adaptive Quickswap and Static Quickswap, perform well under more general workloads
using both synthetic traces (Section §.3) and traces from the Google Borg cluster scheduler (Section [5.4).

For simulation results, we wrote a discrete event simulation framework specifically developed for MSJ
systems. Our simulator implements a wide range of scheduling policies and can either generate synthetic
workloads or use real-world traces. This framework is available on GitHub".

6.1. Simulation Metrics
To evaluate our simulations, we will use a variety of response time metrics. For each class of jobs, j, we
define E[T(J)] to be the mean response time of class-j jobs. This allows us to examine the mean response
time of each class separately to see how a policy balances the response times between job classes.
Assuming a workload consisting of m job classes, we can write the mean response time across all jobs as

B[] = " p/E[TO))

I The calculator program can be found at https://github.com/jcpwfloi/msfq-calculator
Zhttps://github.com/NeDS-Lab /mjqm-simulator /

15

https://github.com/jcpwfloi/msfq-calculator
https://github.com/NeDS-Lab/mjqm-simulator/

We note, however, that as the number of job classes grows and the server needs and job sizes vary more
between job classes, E[T] is not always the most meaningful metric. Specifically, in more complex cases, a
large fraction of the system load can be composed of a small fraction of the jobs in the system. These jobs,
which generally have large server needs and large mean job sizes, will be mostly ignored in the computation
of E[T] because their p; terms are small. For example, we find that in the Google Borg cluster scheduler,
85.8% of the system load is contributed by just 0.34% of the jobs in the workload. This aligns with the
findings of the original Google Borg papers [42, B9].

To illustrate the problem with mean response time in this scenario, we examine the fairness properties of
various scheduling policies in . We find that policies that appear to perform well with respect to
mean response time actually allow the heavy jobs in the system to suffer disproportionately. For example,
under MSF, the mean response time of the heaviest jobs can be several orders of magnitude larger than
the mean response time of the other job classes, even though the overall mean response time remains low.
Because the heavy jobs can comprise a significant fraction of the overall system load (and therefore a large
portion of the revenue for a system operator), this degree of unfairness cannot be tolerated.

It is more realistic to balance overall mean response time and fairness. We therefore introduce weighted
mean response time, a metric that allows us to consider mean response time and fairness simultaneously.
We define weighted mean response time as

k . k
C o T(J)
E[T"] = Zj_l Jlmj-piE Z &
Zz 1 Z/ul pZ j=1 p
N\ k
where p; = I is the system load contributed by class-j jobs and p = Z pj is the total system load. Under
Hj j=
=1

this definition, each job class’s weight corresponds to the fraction of load it contributes to the system. Said
another way, a class’s weight is proportional to the server-hours used by the class (cost paid), preventing
the scenario where a scheduling policy can ignore the infrequent but heavy jobs in the workload.

6.2. Two job classes: one-or-all MSJ

We first evaluate the performance of MSFQ with ¢ = k£ —1 in the one-or-all setting analyzed in Section E
We compare MSFQ to MSF, as well as the First-Fit and nMSR policies examined in the prior work. Our
simulations consider a system with k& = 32 servers, where 90% of job arrivals are light jobs and the mean
job size is 1 for both heavy and light jobs. That is, p; = 0.9, pr = 0.1, and p; = pr = 1. These parameters
reflect the common setting where 10% of the jobs (the heavy jobs) comprise about 80% of the load on the
system. We set £ = k — 1 because all servers will be utilized when there are k or more light jobs in the
system. As soon as there are fewer than k light jobs in the system and some servers are idle, it makes sense
to try to serve the heavy jobs in the system. While the exact choice of ¢ does affect system performance,
Figure P shows that mean response time is largely independent of £ as long as £ is not set very close to 0.

a1
=}

Fig. E shows the effect of varying the arrival

rate, A, on weighted and unweighted mean re- 2 40 T ﬁ:ﬁg Eiﬁ;ﬁ;?
sponse time. We see that our analysis of the mean [f)

response time under MSFQ is highly accurate at §30

a wide range of arrival rates. Furthermore, our 3

MSFQ policy achieves the best weighted and un- %20

weighted mean response time in all cases, outper- §10 “2:0.0:0mane ©r00:010100m000:0:0:0:0:1010
forming the competitor policies by two orders of

magnitude when the arrival rate is high. We also L 5 10 15 20 25 30
measure the mean response time for each job class Threshold ¢

in Figs. and . These results confirm that Figure 2: Impact of the threshold value, ¢, on mean response
MSFQ improves both classes’ mean response time time of the MSFQ policy evaluated in Figure §.

16

100 g10
© —— MSF = —— MSF
£ 80 — nMSR ¢ 8 — nMSR
0 | — First-Fit 8 | — First-Fit
12}
é 60| —— MSFQ (Simulated) & 6| —— MSFQ (Simulated)
& --o- MSFQ (Predicted) g --o-- MSFQ (Predicted)
& 40 4
o =
8 20 —8 2
= 5
NI P @ 0 B
1 2 3 4 5 6 7 8 3 1 2 3 4 5 6 7 8
Arrival Rate Arrival Rate
(a) Overall unweighted mean response time (b) Overall weighted mean response time
100 100
—— MSF —— MSF
U U
E§ 80 — nMSR § 80| — nMSR
o | — First-Fit o | — First-Fit
§ 60| —— MSFQ (Simulated) § 60| —— MSFQ (Simulated)
& --o- MSFQ (Predicted) & -0 MSFQ (Predicted)
& 40 & 40
g g
%’ 20 %’ 20
0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8
Arrival Rate Arrival Rate
(¢) Mean response time of light jobs (d) Mean response time of heavy jobs
Figure 3: Mean response time as a function of job arrival rate in a one-or-all MSJ system with & = 32, p; = 0.9, and

u1 = pr = 1. MSFQ beats all other non-preemptive policies in terms of both mean response time and weighted mean response
time. In particular, MSFQ can be two orders of magnitude better than MSF and nMSR with respect to both metrics.

individually to improve the overall mean response
time.

Our response time analysis in Section @ — MSF Phase 142
showed that MSFQ improves mean response time 125 = MSEF Switchover
by switching faster between service phases. To il- — xzig ::Ij::hljer
lustrate this, we measure the phase durations of
MSF_and MSFQ during the above simulations in
Fig. H Recall that MSF is equivalent to an MSFQ
policy with threshold ¢ = 0, and the MSFQ policy
in this case uses £ = k — 1. Hence, both policies

Juy
%
=}

—_
N
i

—
=1
S

Phase Duration
a1 ~
o a1

N
ai

have full resource utilization in phases 1 and 2, 1 2 3 4 5 6 7 8
L. A Arrival Rate
and use the remaining phases to switch the class
of job in service. Fig. shows that MSFQ has Figure 4: Service phase durations for the MSFQ policy eval-

shorter switching phases, leading to much shorter uated in Figure {

durations of phases 1 and 2.

We further illustrate the impact of having shorter phase durations in Fig. E, which shows the effect of
the threshold value, ¢, on the mean response time of MSFQ. Using any threshold value larger than 0 has a
dramatic benefit on mean response time by allowing faster switchover times and shorter phase durations.
We also note that, while setting an arbitrarily large threshold could waste capacity by causing the system
to switch too frequently, this effect is limited in practice. Hence, while our theoretical results can be used
to select the optimal value of ¢, a good heuristic appears to be to choose £ =k — 1.

6.3. Generalizing to Additional Job Classes

While MSFQ has good performance in the one-or-all case, it is not immediately clear how these results
generalize to cases with additional job classes. Hence, we now simulate the Static Quickswap and Adaptive

17

Quickswap policies defined in Section H These policies generalize MSFQ to cases with many job classes,
using the Quickswap mechanism to try and maintain the short phase durations of MSFQ. Given the added
variability in server needs, we will focus on weighted mean response time in this multiclass case. We consider
a system with k& = 15 servers and 4 classes: class-1, class-3, class-5, and class-15. Each class has a mean job
size of 1, and we set p; = 0.5, ps = 0.25, p; = 0.2, and p;5 = 0.05. Note that we have chosen the server
needs to divide k so that any one class of jobs can utilize all k servers. By Remark [l|, it is therefore possible
to stabilize the system when A < 5.

Figure pl shows that Static and Adaptive Quickswap both provide an advantage over the competitor
policies. Adaptive Quickswap performs the best in practice because it uses more complex switching logic
to avoid having unused servers. Static Quickswap performs slightly worse than Adaptive Quickswap in all
cases. However, Static Quickswap is guaranteed to be throughput-optimal by Remark [I, while Adaptive
Quickswap has no such guarantee. Both policies outperform MSF and First-Fit in all cases.

6.4. Workloads Derived from Google Borg Traces

To further evaluate the Adaptive and Static Quickswap policies, we simulate these policies using work-
loads derived from the Google Borg cluster scheduler traces [39]. Specifically, we use the methodology of [43]
to extract a workload with the same arrival rates, mean job sizes, and server needs as the Google Borg traces.

Our workload consists of 26 job classes from Cell B of the

a1
=

2019 Borg traces [39]. We set k based on the server need
of the heaviest class, so & = 2048 in our experiments. The
resulting stability region is defined by A < 4.94.

Figure fj shows the benefit of using Static and Adaptive
Quickswap instead of a competitor policy. While all poli-
cies remain stable, Adaptive and Static Quickswap are once
again dominant, improving weighted mean response time
by two orders of magnitude when the arrival rate is high.

MSF
Adaptive Quickswap

I

Static Quickswap
First-Fit
—— nMSR

[
=}

S3
o

=
=)

Weighted Mean Response Time

o

Note that, due to its poor performance in prior experiments, /2\rrival Ra3te

nMSR is omitted from Figure . These results generally) . .

. . Figure 5: Weighted mean response time as a func-
match the trends observed with the synthetic workloads tion of job arrival rate in a 4-class MSJ system
of Section p.3, showing a significant benefit obtained with with k = 15, p; = 0.5, p3 = 0.25, ps = 0.2, and
Adaptive Quickswap. However, even using Static Quick- P15 = 0.05.
swap provides a 5x reduction in weighted mean response
time at high load, compared to the next closest competitor, MSF.

We also compare the unweighted mean response time
100000

of MSF, Static and Adaptive Quickswap, and First-Fit in
. While MSF achieves_good performance at
light to medium loads, we show in IA%Eendix (1 that this
is at the expense of sacrificing certain classes of other jobs
by computing the fairness index. In addition, we show that
better fairness metrics and response time performance are
possible in m by enabling preemption if there
is no preemption overhead. However, preemptions without

—— MSF
80000 —— Adaptive Quickswap

Static Quickswap
60000 First-Fit

40000

20000

Weighted Mean Response Time

overheads are unrealistic, therefore we are only focusing on 2 3
non-preemptive policies. Arrival Rate

Figure 6: Weighted mean response time as a func-
tion of job arrival rate for MSJ systems serving a

7. Conclusion Google Borg workload. Here, & = 2048 and the
workload is composed of 26 classes based on real-
This paper describes new, non-preemptive scheduling world trace data.

policies for multiserver jobs. While the non-preemptive
MSF policy has been observed to remain stable at high

18

loads, and while we prove it is throughput-optimal in the one-or-all case, it suffers from high mean response
time because it switches service phases too slowly. We introduce the class of MSFQ policies, and its general-
izations, Static Quickswap and Adaptive Quickswap. These Quickswap policies use a queue length threshold
to decide when to switch phases, allowing for the design of policies that switch phases much faster than
MSF. We prove that MSFQ is throughput-optimal in the one-or-all case, analyze the mean response time
of MSFQ in the one-or-all case, and demonstrate the benefits of Quickswap policies in simulations based on
traces from the Google Borg cluster scheduler.

Before this paper, there were two state-of-the-art choices for non-preemptive multiserver scheduling.
There was MSF, which suffers from slow phase changes, and the class of MSR policies, which use a Markov
chain to select schedules and allow phase changes at a faster rate. The drawback to MSR policies is that
their scheduling decisions do not consider queue length information. As a result, an MSR policy may waste
system capacity by reserving servers for jobs that are not in the system. Hence, before MSFQ, one had to
choose between either high resource utilization and slow phase switching, or low resource utilization and
fast phase switching. This paper shows that MSFQ policies get the best of both worlds, using queue length
information to switch phases faster without wasting servers. Although MSFQ is more complex than either
of the prior policies, we still provide an accurate analysis of its mean response time in the one-or-all case.

Acknowledgements

We thank our shepherd, Dr. Rhonda Righter, and the anonymous reviewers for their insightful feed-
back that helped improve our work. This work is supported by a Northwestern IEMS Startup Grant, a
UNC Chapel Hill Startup Grant, and National Science Foundation grants NSF-CCF-2403195 and NSF-IIS-
2322974. This work is also supported by TUCANG-CM (TEC-2024/COM-460), funded by CM, the Region
of Madrid, Spain (ORDEN 5696/2024).

19

References

(1
2]
(3]

(4]

(22]
23]
[24]

[25]

[26]
[27]
28]
[29]
[30]

(31]

AFANASEVA, L., BASHTOVA, E., AND GRISHUNINA, S. Stability Analysis of a Multi-server Model with Simultaneous Service
and a Regenerative Input Flow. Methodology and Computing in Applied Probability 22, 4 (2020), 1439-1455.
ANANTHANARAYANAN, G., GHODSI, A., SHENKER, S., AND STOICA, I. Effective straggler mitigation: Attack of the clones.
In 10th USENIX Symposium on Networked Systems Design and Implementation (NSDI 13) (2013), pp. 185-198.
ANGGRAITO, A., OLLIARO, D., MARIN, A.; AND AJMONE MARSAN, M. The Non-Saturated Multiserver Job Queuing Model
with Two Job Classes: a Matrix Geometric Analysis. In 2024 MASCOTS (2024), IEEE, pp. 1-8.

ANGGRAITO, A., OLLIARO, D., MARIN, A., AND AJMONE MARSAN, M. The multiserver job queuing model with two job
classes and cox-2 service times. Performance Evaluation 169 (2025), 102486.

ARTALEJO, J. R., AND LOPEZ-HERRERO, M. Analysis of the busy period for the m/m/c queue: An algorithmic approach.
Journal of Applied Probability 38, 1 (2001), 209-222.

BELOGLAZOV, A., AND Buyya, R. Energy Efficient Allocation of Virtual Machines in Cloud Data Centers. In 2010 10th
IEEE/ACM International Conference on Cluster, Cloud and Grid Computing (2010), IEEE, pp. 577-578.

BoRsT, S., AND Boxma, O. Polling: past, present, and perspective. Top 26 (2018), 335-369.

Borst, S. C., AND Boxma, O. J. Polling models with and without switchover times. Operations Research 45, 4 (1997),
536—543.

BorsT, S. C., AND VAN DER MEI, R. D. Waiting-time approximations for multiple-server polling systems. Performance
Ewvaluation 31, 3-4 (1998), 163-182.

Bosk, S. K. Advanced Queueing Networks. Springer US, Boston, MA, 2002, ch. 4, pp. 98-101.

BRriLL, P., AND GREEN, L. Queues in which Customers receive Simultaneous Service from a Random Number of Servers:
a System Point Approach. Management Science 30, 1 (1984), 51-68.

CHEN, W., RAO, J., AND ZHOU, X. Preemptive, Low Latency Datacenter Scheduling via Lightweight Virtualization. In
USENIX ATC (2017), pp. 251-263.

CHEN, Z., GROsOF, 1., AND BERG, B. Improving multiresource job scheduling with markovian service rate policies.
Proceedings of the ACM on Measurement and Analysis of Computing Systems 9, 2 (2025), 1-36.

DEAN, J., AND GHEMAWAT, S. Mapreduce: simplified data processing on large clusters. Communications of the ACM 51,
1 (2008), 107-113.

DEeLIMITROU, C., AND KOZYRAKIS, C. Quasar: Resource-efficient and qos-aware cluster management. ACM Sigplan Notices
49, 4 (2014), 127-144.

FiLipporpouLos, D., AND KaRATZA, H. An M/M/2 Parallel System Model with Pure Space sharing among Rigid Jobs.
Mathematical Computer Modelling 45, 5 (2007), 491-530.

Foss, S. G., AND CHERNOVA, N. I. Dominance theorems and ergodic properties of polling systems. Problems of Information
Transmission 32, 4 (1996), 342-364.

Foss, S. G., AND CHERNOVA, N. I. On polling systems with infinitely many stations. Siberian Mathematical Journal 37,
4 (1996), 832-846.

FRICKER, C., AND JAIBI, M. R. Monotonicity and stability of periodic polling models. Queueing systems 15, 1 (1994),
211-238.

GEORGIADIS, L., NEELY, M. J., AND TAssiuLAs, L. Resource Allocation and Cross-Layer Control in Wireless Networks.
Foundations and Trends in Networking 1 (2006), 1-144.

GROSOF, 1., AND HARCHOL-BALTER, M. Invited Paper: ServerFilling: A Better Approach to Packing Multiserver Jobs.
In Proceedings of the 5th Workshop on Advanced Tools, Programming Languages, and PLatforms for Implementing and
Ewvaluating Algorithms for Distributed Systems (2023), Association for Computing Machinery, pp. 1-5.

GROSOF, 1., HARCHOL-BALTER, M., AND SCHELLER-WOLF, A. WCFS: a new framework for analyzing multiserver systems.
Queueing Systems 102, 1 (2022), 143-174.

GROSOF, 1., HARCHOL-BALTER, M., AND SCHELLER-WOLF, A. New Stability Results for Multiserver-job Models via
Product-form Saturated Systems. SIGMETRICS Performance Evaluation Review 51, 2 (2023), 6-8.

GROsoF, 1., HoNG, Y., HARCHOL-BALTER, M., AND SCHELLER-WOLF, A. The RESET and MARC techniques, with
application to multiserver-job analysis. Performance Evaluation 162 (2023), 102378.

GROSOF, 1., ScuLLy, Z., HARCHOL-BALTER, M., AND SCHELLER-WOLF, A. Optimal Scheduling in the Multiserver-job
Model under Heavy Traffic. Proceedings of the ACM on Measurement and Analysis of Computing Systems 6, 3 (2022),
1-32.

HARCHOL-BALTER, M. Performance modeling and design of computer systems: queueing theory in action. Cambridge
University Press, 2013.

HARCHOL-BALTER, M. The Multiserver Job Queueing Model. Queueing Systems: Theory and Applications 100, 1-2
(2022), 201-203.

JAIN, R., CHiu, D., AND HAWE, W. A quantitative measure of fairness and discrimination for resource allocation in shared
computer systems, 1998.

JETTE, MORRIS A.AND WICKBERG, T. Architecture of the Slurm Workload Manager. In Job Scheduling Strategies for
Parallel Processing (2023), pp. 3-23.

LE BOUDEC, J.-Y. Performance Evaluation of Computer and Communication Systems. EPFL Press, Lausanne, Switzer-
land, 2010.

MAGULURI, S. T., SRIKANT, R., AND YING, L. Stochastic Models of Load Balancing and Scheduling in Cloud Computing
Clusters. In JEEE INFOCOM 2012 - IEEE Conference on Computer Communications (2012), IEEE, pp. 702-710.

20

[32] Morozov, E., AND RUMYANTSEV, A. S. Stability Analysis of a MAP/M/s Cluster Model by Matrix-Analytic Method. In
Computer Performance Engineering (EPEW), Lecture Notes in Computer Science (2016), Springer, pp. 63-76.

[33] OLLIARO, D., AJMONE MARSAN, M., BALSAMO, S., AND MARIN, A. The saturated Multiserver Job Queuing Model with
two classes of jobs: Exact and approximate results. Performance Evaluation 162 (2023), 102370.

[34] PsycHAs, K., AND GHADERI, J. On non-preemptive vm scheduling in the cloud. Proceedings of the ACM on Measurement
and Analysis of Computing Systems 1, 2 (2017), 1-29.

[35] PsycHAs, K., AND GHADERI, J. Randomized algorithms for scheduling multi-resource jobs in the cloud. IEEE/ACM
Transactions on Networking 26, 5 (2018), 2202-2215.

[36] Rizk, A., Poroczek, F., aND Crucu, F. Computable bounds in fork-join queueing systems. SIGMETRICS Perform.
Ewval. Rev. 43, 1 (June 2015), 335-346.

[37] RUMYANTSEV, A., AND MOROZOV, E. Stability Criterion of a Multiserver Model with Simultaneous Service. Annals of
Operational Research 252, 1 (2017), 29-39.

[38] SPEITKAMP, B., AND BICHLER, M. A Mathematical Programming Approach for Server Consolidation Problems in Virtu-
alized Data Centers. IEEE Transactions Services Computing 3, 4 (2010), 266—278.

[39] TirMAzI, M., BARKER, A., DENG, N., HAQUE, M. E., QIN, Z. G., HAND, S., HARCHOL-BALTER, M., AND WILKES, J.
Borg: the next generation. In Proceedings of the fifteenth European conference on computer systems (2020), pp. 1-14.

[40] TWEEDIE, R. L. Sufficient conditions for regularity, recurrence and ergodicity of markov processes. Mathematical Pro-
ceedings of the Cambridge Philosophical Society 78, 1 (1975), 125-136.

[41] VavicapaLLl, V. K., MURTHY, A., DoucLas, C., AGARWAL, S., KONAR, M., Evans, R., GRavES, T., LOWE, J., SHAH,
H., SETH, S., SAHA, B., CUrINO, C., O’MALLEY, O., RADIA, S.AND REED, B., AND BALDESCHWIELER, E. Apache Hadoop
YARN: yet another Resource Negotiator. In Proceedings of the 4th Annual Symposium on Cloud Computing (2013),
Association for Computing Machinery, pp. 1-16.

[42] VERMA, A., PEDROSA, L., KOrRUPOLU, M. R., OPPENHEIMER, D., TUNE, E., AND WILKES, J. Large-scale cluster manage-
ment at Google with Borg. In EuroSys (2015).

[43] YiLpiz, M., AND BaroccHi, A. Data-driven workload generation based on google data center measurements. In Proc. of
HPSR (2024), pp. 143-148.

Appendix A. Proof of Theorem E

Theorem 3. In the one-or-all MSJ system, the Most Servers First with Quickswap policies are positive
A A
recurrent for all thresholds £, 0 < £ < k, whenever BN I
kpy pg
Proof. Recall from Section Ell that we represent the system state as the five-tuple (nq, ng, u1, ug, z), where
z is the phase, as defined in Section §.2. Note that u; < k, up < 1, and at least one of u; and u; must be 0.
Now, we can define our Lyapunov function V(-):

n n en
V(ny, ng, u1, ug, 2) i= - +—k+l{z:2}—k + 1{z & {1,2}}(cF — k=), (A1)
kpa 2Mk
A A A 1
where e = 1 — 22 — —k, and where ¢ = max (2, 71, —)
kpy o pe (=D +1" i

Intuitively, the two non-indicator terms ensure negative drift in phases 1 and 2, where all servers are
busy. However, they do not suffice for the other phases, when some servers are idle. The 1{z = 2} term
reduces the negative drift in phase 2 slightly to build up a potential, which is used in the other phases by
the 1{z & {1,2}} term to maintain negative drift in that phase.

We specifically use the continuous-time Foster-Lyapunov theorem [40]. We must demonstrate that this
Lyapunov function has three properties, two of which are defined with reference to the drift E[G o V (-)],
where G is the instantaneous generator operator of the system.

1. There exists a finite set of states B and a positive constant § > 0 such that for all states outside of B,
E[Go V()] < 6.

2. There exists a constant C' such that for all states, E[G o V(-)] < C.
3. There exists a lower bound D such that for all states, V(-) > D.

Demonstrating Property m is the primary challenge. Property B holds with D = 0. Property E follows from
the fact that V is linear in the two unbounded inputs ny, ng, which change by at most 1 upon any transition.

21

Furthermore, from any state, the total transition rate is at most A + max{ku1, ur}. Hence, there exists an
upper bound on drift from any system state.

It thus remains to prove Property [ll, which we show holds with § = €/2 and the following finite exception
set B, consisting of all states in phase 2 in which n; = k, so phase 2 has the potential to end, and where ny
is below a threshold, as well as the empty state:

22 (ck — 1
B: {(n17nk;u17uk7z) ‘ (nl :k&nk S M

&z = 2) or (np =0&mn,=0) }

We specialize our argument based on the current phase of the system (z = 1,2,3,4), and whether the
system is in a state on the border of switching phases.

We start with non-border states in phase 1. In this case, uy = 1,2 = 1. As a result, the drift of V(-) is:
A1 A A A
ElGoV()]=—+——-uy=-—"+——-1=—-<-§
: 0 kpy kpy o p ’
where we use the fact that the drift of ny is A1 and of ny is Ax.

Next, consider states in phase 1 that are on the border of switching to phase 2. In the subsequent phase
2 state, ny = 0, because the MSFQ policy only switches from serving heavy jobs to light jobs when there
are no heavy jobs remaining. As a result, the 1{z = 2} term in (JA.1]) is 0 when beginning phase 2, so Item
holds throughout phase 1.

Next, in phase 2, in states which are not on the border, we have u; = k, z = 2, by the definition of phase
2 in Section @ As a result, the drift of V(-) is

)\1 U7)\k: 6>\k

€

When the system is in phase 2 and is on the border of switching to phase 3, note that when a phase
change occurs, the 1{z = 2} term in (@) will change from ;nTk to 0, and the 1{z = 3} term will change
k

from 0 to ¢® — 1. Recall that the exception set B includes all states in phase 2 on the border where ny
is below the threshold: nj < (¢® — 1)2\/e. For all phase 2 border states outside this set, the change in
indicators from phase 2 to phase 3 results in a negative change in V'(-), as desired. Thus, Item [I| holds
throughout phase 2.

Finally, in the remaining phases 3 and 4, we use different arguments depending on the value of u;. We
start with states that do not transition directly to phase 1.

First, in the case where uy; = k, the servers are fully occupied by light jobs. In this case, if ny > k, the
1{z = 2} term in (A.]]) does not change on the next arrival or completion, because u; = k will remain true
after the next event. Thus,

EGovV() =L W M o 5
kpr kg
If u; = k and ny = k, the indicator term has a negative instantaneous drift: If a job completes, n; =k — 1,
so the indicator term becomes ¢* — 1, while under any other event, the indicator term remains c*. Thus,

E[GOV(-)]z——f—F—k—km:—e—k;,ul§—5.

In the case where ¢ < u; < k, some servers are idle, and the system is in phase 3, so light jobs continue
to enter service. In this case, we upper bound the drift of V' as follows:

)\1 U1)\k

E[Go V()] = Wk + o + A (P — Rty gy g (P — R ()
1
A A g ! <14 (1) et — (61
ok e (I—c)(Me™ —uym) 1+ (1= c)(Ae™ = (0= 1))

(A.2)
22

At

m), we substitute into (@) As a result,
!

Recalling that ¢ = max (2,

E[GoV()] <1+ (1 —c) Mt = (0 — 1)) <142 (-1)(1) = -1 < —e < 4.

In the case where 0 < uy < £: the system is in phase 4, and light jobs are blocked from entering service.
In this case, arriving jobs do not increase w1, so the drift is much simpler:
A1 our A

ElGo V()] = lel T + E + U1M1(Ck7“1 — ck’(“lfl))

<THuppn (P —F =Dy <14 (e —P) =14 pre(l —¢).

1
Recalling that ¢ > 2 and that ¢ > —, we find that E[G o V] < —1, which completes this step.

The remaining case within phases 3 and 4 is the case where u; = 0. In this case, the system must
be empty, because we would otherwise switch to phase 1._Recall that this case is in the finite set B of
exceptional high-drift states, so it does not affect Property [.

Having handled states in phases 3 and 4 that do not transition directly to phase 1, we now verify the
drift condition for states where the system may transition from phase 3 or 4 to phase 1. When entering
phase 1, ux = 1, so u3 = 0: All light jobs in service have been completed. As a result, the 1{z ¢ {1,2}}
term in (@) is 0, as desired.

With all states verified, Property m holds, so the Foster-Lyapunov theorem demonstrates stability. O

Appendix B. Proofs of Lemma E and Lemma E

—_— k—1 —_—
Lemma 7. The Laplace transform of the duration of phase 3 is given by: Hs(s) = H . Hjs (s), where
=

Hj ; is the transit time from j light jobs in the system to j — 1 light jobs in the system, with transform:
- JH1 j<k
Hjj(s) = At +jpn +s— M Hs j1a(s) (5)
Bgl(s) ji=k.

Proof. To characterize Hs ;, we condition on the first event that happens during the Hj3 ; period. When the
first event is an arrival, the remainder of Hs ; consists of a H3 ;4 period, followed by another independent
Hj ; period. When the first event is a completion, the period ends. In particular, we have

Hy o = Exp(jpi + M)+ Hsz j41 + Hs; next event is an arrival
" Exp(jui + A1) next event is a departure |

Note that Hsj ~ Bgl as the time going from having k to k — 1 light jobs is the busy period because the
completion rate of light jobs here is kuy. Then, the phase duration of phase 3 is the sum of these periods.

k-1
Formally, Hs = Z . Hs ;. Then, by standard transform techniques, Lemma H holds. O
J

S
£ Jh

Lemma 8. The Laplace transform of the duration of phase 4 is given by: }AI:;(S) = H T s
=L jpr + s

Proof. In phase 4, no further light job arrivals are allowed into service, and there are ¢ light jobs at the

beginning of phase 4. Therefore, we can write Hy as a sum of i.i.d. exponential distributions: Hy =
¢ ¢ ‘)

Z Exp(ju1). Therefore, by standard transform techniques, FI;(S) = H Exp(jur)(s) = H IR

j=1 j=1 e 0! +s

23

Appendix C. Fairness Evaluation

To compare the fairness of scheduling policies, we compute Jain’s Fairness index [2§] as

(b, Bro)’

P B0 (C.1)

JE[TV),E[TD],. .. E[T®]) =

The value of the fairness index is between % and 1. A higher value of the fairness index indicates that the
scheduling policy is fairer.

We examine the fairness of various scheduling policies in Figure @ Although MSF and First-Fit achieve
low unweighted mean response time (Figure), the heavy jobs experience orders of magnitude larger
waiting times than the light jobs (Figurej@) under these policies. Under Adaptive and Static Quickswap,
on the other hand, the mean response times of light and heavy jobs are comparable. As a result, Adaptive
and Static Quickswap achieve higher fairness indices compared to MSF and First-Fit (Figure [C.7d). Because
unweighted mean response time can hide these important imbalances between the job classes, our evaluation
uses weighted mean response time — a metric that balances overall mean response time and fairness.

5]

100000

v
£
=
Y —— MSF E
£ 80000 . . 80000 08
ag]_ —— Adaptive Quickswap % 5
*‘é 60000 Static Quickswap 2 60000 En(,
=] r
g First-Fit & 3
= 40000 £ 40000 £04
3 g 5
ﬁc 20000 v ﬁ 20000 02 -
54 y
z o L 2
5 0 1 2 3 1 0 1 2 3 1 5 0075 1 2 3 1
Arrival Rate Arrival Rate Arrival Rate
(a) Unweighted overall mean response time (b) Mean response time by classes (c) Jain’s Fairness Index

Figure C.7: The response time performance and fairness index as a function of the overall arrival rate for MSJ systems serving
a Google Borg workload. The middle plot, Figure , shows the mean response time by class, where the dotted lines denote
the mean response time of the heaviest jobs and the solid lines denote the mean response time of the lightest jobs. The other
plots, left and right, show combined mean response time and fairness metrics across classes in a single, solid line.

Appendix D. Comparison with Preemptive Policies

Although preemption is either infeasible or carries significant overhead for many datacenter workloads,
we compare Adaptive and Static Quickswap to a preemptive policy for the sake of completeness. Here, we
assume that the preemptive policy, ServerFilling, can preempt jobs with no overhead or setup cost. We see
that ServerFilling can use preemption to greatly outperform any non-preemptive policy.

100000 100000
—— MSF

—— Adaptive Quickswap

—— MSF

80000 —— Adaptive Quickswap

80000

60000 Static Quickswap 60000 Static Quickswap

—— ServerFilling —— ServerFilling

40000 40000

Unweighted Mean Reponse Time
Weighted Mean Reponse Time

First-Fit First-Fit
20000 20000 /
0 T 2 3 4 0 1 2 3 4
Arrival Rate Arrival Rate
(a) Unweighted mean response time (b) Weighted mean response time

Figure D.8: The overall mean response time of the system as a function of the overall arrival rate for MSJ systems serving
a Google Borg workload. Points of higher arrival rates for the First-Fit policy are hidden because the experiments did not
converge.

24

Figure @ shows that the preemptive ServerFilling policy [22] greatly outperforms all non-preemptive
policies with respect to both unweighted and weighted mean response time. ServerFilling uses preemptions
to guarantee full resource utilization whenever there are more than k jobs in the system. The non-preemptive
scheduling policies, on the other hand, may waste significant service capacity even when there are many jobs
in the queue. This waste leads to higher mean response times for all non-preemptive policies, including our
Quickswap policies.

25

	Introduction
	Prior Approaches
	A New Approach: Most Servers First with Quickswap
	Contributions

	Related Work
	Systems for Multiserver Job Scheduling
	Multiserver Job Scheduling in Theory
	Polling Systems and Most Servers First

	Model
	Multiserver Jobs
	Stability Region
	General Notation

	Policies
	Most Servers First
	Most Servers First Quickswap (MSFQ)
	Static Quickswap
	Adaptive Quickswap

	Analysis of the MSFQ Policy
	Throughput-optimality of MSFQ
	Approximations in Response Time Analysis
	Response time analysis
	Phase Duration Analysis

	Simulation Results
	Simulation Metrics
	Two job classes: one-or-all MSJ
	Generalizing to Additional Job Classes
	Workloads Derived from Google Borg Traces

	Conclusion
	Proof of thm:pos-stability
	Proofs of lem:h3 and lem:h4
	Fairness Evaluation
	Comparison with Preemptive Policies

